Week in Review # 11

(b)
$$\begin{bmatrix} 8 & -1 \\ -3 & 0 \end{bmatrix}$$

1. (a) Red 2 $\begin{bmatrix} \text{Red 6} & \text{Black 7} & \text{Black 8} \\ 4 & -2 & -2 \\ -6 & 3 & 2 \end{bmatrix}$ (c) $\begin{bmatrix} -5 \\ 0 \end{bmatrix}$
(b) Row 1
(c) Column 3 6. (a) $P = \begin{bmatrix} 3 & 13 \\ 16 & 16 \end{bmatrix}$ $Q = \begin{bmatrix} \frac{14}{16} \\ \frac{2}{16} \end{bmatrix}$
2. (a) option 1: R-1 and C-4
option 2: R-3 and C-1 value $= \frac{54}{16}$
(b) R-3 and C-4
3. (a) yes it is strictly determined.
optimal strategy:
row player: row 2
column player: column 2
value of the game = 4
(b) not strictly determined.
optimal strategy:
row player: row 2 or row 4
column player: column 2
value of the game = 2
4. $A = \begin{bmatrix} -2 & 2 \\ -2 & 7 \end{bmatrix}$ $P = \begin{bmatrix} \frac{3}{4} & 0 & \frac{1}{4} \end{bmatrix}$
 $P = \begin{bmatrix} \frac{3}{4} & 0 & \frac{1}{4} \end{bmatrix}$
 $P = \begin{bmatrix} \frac{3}{4} & 0 & \frac{1}{4} \end{bmatrix}$
 $P = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ $Q = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
(a) $Q = \begin{bmatrix} 0.25 \\ 0.30 \\ 0.45 \end{bmatrix}$ value $= 1$
compute the expected value for
each of these strategies.
 $P_1 = \begin{bmatrix} 0.5 & 0.5 \end{bmatrix}$, $E = P_1AQ = -0.1$
 $P_2 = \begin{bmatrix} 0.6 & 0.4 \end{bmatrix}$, $E = P_2AQ = Q = \begin{bmatrix} 0 \\ 0.7 \\ 0.3 \\ 0 \end{bmatrix}$
 $P_3 = \begin{bmatrix} 0.35 & 0.75 \end{bmatrix}$, $E = P_2AQ = Q = \begin{bmatrix} 0 \\ 0.7 \\ 0.3 \\ 0 \end{bmatrix}$
value $= -0.2$
(b) reduce to $\begin{bmatrix} -2 & 4 \\ 1 & -3 \\ 0 \end{bmatrix}$

The best for John is P_3 since this expected value is the largest.

(b) 0.05 * 1,000 = 50