Week in Review–Additional Chapter 1 Material

Section 1.6: Conditional Probability and Independent Events. Section 1.7: Bayes' Theorem.

- TO CONVERT CONDITIONAL PROBABILITY TO REGULAR PROBABILITY. • $P(B|A) = \frac{P(B \cap A)}{P(A)}$
 - probability of the event B occurring knowing that the event A has already occurred.
- A and B are independent events if and only if $P(A \cap B) = P(A)P(B)$
- 1. A clothing company selected 1000 persons at random and surveyed them to determine a relationship between age of purchaser and annual purchases of jeans. The results are given in the table. A person from the survey is selected at random.
 - (a) What is the probability that the person is under 12 if they purchases 3 or more pairs of jeans annually.
 - (b) What is the probability that the person purchases 2 pairs of jeans annually if we know they are older than 25.
 - (c) What is the probability that the person is younger than 19 given they purchase 0 or 1 pair of jeans annually.

Jeans Purchased Annually						
Age	0	1	2	3 or More	Totals	
Under 12	60	70	30	10	170	
12-18	30	100	100	60	290	
19-25	70	110	120	30	330	
Over 25	100	50	40	20	210	
Totals	260	330	290	120	1000	

 s_4

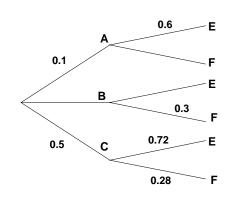
11

29

2. S is the sample space with events: E, F, and G. Use this information to answer these questions.

outcome

prob.


- $S = \{s_1, s_2, s_3, s_4, s_5, s_6, \}$ $E = \{s_1, s_2, s_5, s_6\}$ $F = \{s_2, s_4, s_5\}$ $G = \{s_3, s_5\}$
- (a) P(F|E) =
- (b) P(G|F) =

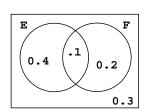
3. Use the Venn Diagram to answer the following.

(a) P(E|F) =

(b)
$$P(F^C|E) =$$

- 4. Fill in the missing values of the tree and then answer the following.
 - (a) $P(B \cap E) =$
 - (b) P(E|C) =
 - (c) P(E) =
 - (d) $P(A \cup F) =$
 - (e) P(C|E) =
 - (f) Are the events B and E independent? Justify your answer.
 - (g) Are the events A and E independent? Justify your answer.

 s_2


 $\frac{7}{29}$

 s_1

 $\frac{2}{29}$

 s_3

 $\frac{1}{29}$

 s_5

6

29

 s_6

 $\mathbf{2}$

29

- 5. Two cards are drawn from a standard deck of cards without replacement. What is the probability that the first card is a club if the second card is a club?
- 6. Two cards are drawn from a standard deck of cards without replacement. What is the probability that the first card is an Ace if the second card is a diamond?
- 7. A building on campus has three vending machines: two coke machines and a snack machine. Based on the model of the machines, the first coke machine has a 12% chance of breaking down in a particular week and the second coke machine has a 4% chance of breaking down in a particular week. The snack machine has a 10% chance of breaking down in a particular week. Assuming independence, find the probability that exactly one machine breaks down.
- 8. The following information was compiled regarding married couples living in single-family dwellings. It was found that in 30% of these households, both the husband and the wife worked, and that 10% of these couples were renting. In 50% of the households, only the husband worked, and 20% of these couples were renting. In 15% of the households, only the wife worked, and 70% of these couples were renting. In the households where neither worked, 95% were renting. A couple from this group is selected at random.
 - (a) Find the probability that this couple is renting.
 - (b) What is the probability that only the husband works and the couple owns their house?
 - (c) If the couple is renting, find the probability that only the wife is working.
- 9. An auto insurance company classifies its drivers as good risk, medium risk or bad risks. The table shows the percent of the drivers in these classifications and the probability that a driver in that classification will have an accident during the next year. A driver is selected bar random.
 - (a) What is the probability that the driver will have an accident in the next year?
 - (b) What is the probability that the driver is rated as a medium risk if they had an accident in the next year?
 - (c) What is the probability that the driver is rated as a bad risk and they did not have an accident in the next year.

Classification	drivers(%)	Accident(%)
good	50	2
medium	35	5
bad	15	12