## Week in Review-Additional Material sections 3.3 and 3.4

1. Type the values of X into $L_{1}$, the frequency(cars) into $L_{2}$, and then compute

## 1-Var Stats $L_{1}, L_{2}$

This is a sample. If your instructor did not talk about data being a sample then use the population results.
sample variance $=3.3698$
population variance $=3.3661$
sample st. dev. $=1.8357$
population st. dev. $=1.8347$
2. Type the values of X into $L_{1}$, the frequency(students) into $L_{2}$, and then compute

## 1-Var Stats $L_{1}, L_{2}$

This data is a population since the entire class is surveyed
population variance $=3.4251$
population st. dev. $=1.8507$
3. this is a binomal problem.
$\mathrm{n}=500, \mathrm{p}=0.84$
$\mu=n * p=420$ and $\sigma=\sqrt{n * p * q}=8.19756$
(a) $411,412,413, \ldots, 429$
(b) $427,428,429, \ldots, 500$
(c) $\mathrm{r}=404,405,406, \ldots 436$
binomcdf(500,0.84, 436) - binomcdf(500,0.84,403)
Answer: 0.9562
4. a Chebychev's problem.
first find the value of k .
$\mu+k \sigma=24+k * 3=28$ or $k=\frac{4}{3}$
The prob. that the hair dryers will last between 20 and 28 months is $\geq 1-\frac{1}{\left(\frac{4}{3}\right)^{2}}=\frac{7}{16}$
5. a Chebychev's problem.
first find the value of k .
$\mu+k \sigma=36+k * 4=30$ or $k=1.5$
The prob. that the product will last between 30 months and 42 months is
$\geq 1-\frac{1}{1.5^{2}}=0.5555555555=\frac{5}{9}$
The number of items will be at least $9000 * \frac{5}{9}$ or at least 5000 items
6. (a) normalcdf $(0.3,1.83,0,1)=0.3485$
(b) normalcdf(-1E99,1.5,0,1) $=0.9332$
(c) 0
7. (a) $\mathrm{A}=\operatorname{invNorm}(.68,0,1)=0.4677$
(b) since $48 \%$ of the area is between $-B$ and $B$, this means that due to symmetry and the fact all probability adds up to one each outside piece is $26 \%$, see the figure.


$$
\mathrm{B}=\operatorname{invNorm}(.48+.26,0,1)=0.6433
$$

8. (a) normalcdf $(32,53,40,8)=0.7893$
(b) normalcdf( $45,1 \mathrm{E} 99,40,8$ ) $=0.2660$
(c) $\operatorname{invNorm}(1-.75,40,8)=34.6041$
9. 1.3 standard deviations above the mean gives $x=83+1.3 * 5=89.5$
$P(X<89.5)=$ normalcdf(-1E99, 89.5,83,5) $=0.9032$

Answer: 90.32\%
10. (a) normalcdf( $35000,1 \mathrm{E} 99,40000,2000)=0.9938$
(b) $800 * 0.9938=795.0322$ so approximately 795
(c) normalcdf $(38000,44000,40000,2000)=0.8186$
(d) This is a binom problem with success being a tire having a tread life between 38,000 and 44,000 miles. $\mathrm{N}=4, \mathrm{p}=0.8186$ (from part c ), and $\mathrm{r}=4$.
binompdf(4, 0.8186,4)
Answer: 0.4490
(e) This is a binom problem with success being a tire having a tread life between 38,000 and 44,000 miles. $\mathrm{N}=4, \mathrm{p}=0.8186$ (from part c ), and $\mathrm{r}=3$.
binompdf(4, 0.8186,3)
Answer: 0.3980
11. (a) normalcdf(-1E99, $7.2,8,0.5)=0.0548$
(b) $0.0548 * 300=16.44$ so approximately 16 .

