Week in Review–Additional Chapter 5 Material

Section 5.2: Matrix Multiplication

- if A is a mxn matrix and B is a nxp matrix then the matrix AB has a size of mxp
 note: the number of columns of A equals the number of rows of B.
- \bullet identity matrix I_n

 \bullet size $n \mathbf{x} n$

• all zeros except for $a_{1,1} = a_{2,2} = a_{3,3} = \dots = 1$

$$A = \begin{bmatrix} 7 & 2 & 4 \\ 6 & 5 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 9 & 3 & 0 \\ -1 & 2 & 8 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 3 \\ -2 & 5 \\ 2 & 0 \end{bmatrix} \qquad D = \begin{bmatrix} x & 1 \\ 2 & 5 \end{bmatrix}$$

1. Use the above matrices to compute the following.

- (a) AC =
- (b) BD =
- (c) DB =
- (d) $D^2 =$
- (e) $2\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 & 8 \\ 2 & 3 & 0 \\ 0 & 1 & 5 \end{bmatrix} =$
- (f) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 & 8 \\ 2 & 3 & 0 \\ 0 & 1 & 5 \\ 8 & 2 & 5 \end{bmatrix} =$
- 2. A dietitian plans a meal around two foods. The number of units of vitamin A and vitamin C in each ounce of these foods is represented by the matrix M.

		Food I	Food II	Food I	Food II	Food I	Food II
M =	Vitamin A Vitamin C	$\begin{bmatrix} 30\\7 \end{bmatrix}$	$\left[\begin{array}{c}90\\45\end{array}\right]$	$B = \left[5 \right]$	2]	$L = \left[\begin{array}{c} 9 \end{array} \right]$	4]

The matrices B and L represent the amount of each food (in ounces) consumed by the girl at breakfast and lunch, respectively. Explain the meaning of the entries in these computations..

(a)
$$LM = \begin{bmatrix} 298 & 990 \end{bmatrix}$$
 (b) $MB^T = \begin{bmatrix} 330 \\ 125 \end{bmatrix}$

Section 5.3: The inverse of a Matrix

- the matrix must be square.
- \bullet <u>NOT</u> all square matrices have an inverse.
- the inverse of A is denoted A^{-1}
- $\bullet \ AA^{-1}=A^{-1}A=I$
- A system of equations may be written as a matrix equation: AX=B
 - A is the coefficient matrix
 - X is the variable matrix
 - If A has an inverse, then the solution is $X = A^{-1}B$.
 - Matrix A not having an inverse does not imply that the system of equations has no solution. It means that you need to try another method to solve the problem.

3. If
$$A = \begin{bmatrix} 5 & 1 \\ 5 & 2 \end{bmatrix}$$
 find A^{-1}
4. If $A = \begin{bmatrix} 2 & 1 & 1 \\ 3 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix}$ find A^{-1}
5. If $A = \begin{bmatrix} 2 & 1 & 1 \\ 4 & 2 & 3 \\ 2 & 1 & 2 \end{bmatrix}$ find A^{-1}

6. Determin if the matrices A and B are inverses of each other.

$$A = \begin{bmatrix} 1 & 2 & x \\ 0 & 5 & 2 \\ 0 & 2 & 1 \end{bmatrix} \qquad \qquad B = \begin{bmatrix} 1 & 2x - 2 & 4 - 5x \\ 0 & 1 & -2 \\ 0 & -2 & 5 \end{bmatrix}$$

7. Answer the following using this system of equations. $\begin{array}{rrrr} 2x & +z & = & 2\\ 2x+y-z & = & 1\\ 3x+y-z & = & 4 \end{array}$

- (a) Write down the coefficient matrix.
- (b) Write the system of equations as a matrix equation.
- (c) Solve the system of equations using matrices.
- 8. True or False. A system of equations is represented by the matrix equation AX = B. If the coefficient matrix, A, does not have an inverse then the system of equations does not have a solution.
- 9. Solve for the matrix X. Assume that all matrices are square and all needed inverses are possible.
 - (a) BX = E CX
 - (b) XJ + XA = K