Week in Review-Additional Chapter 5 Material

Section 5.2: Matrix Multiplication

- if A is a $m \mathrm{x} n$ matrix and B is a $n \mathrm{x} p$ matrix then the matrix AB has a size of $m \mathrm{x} p$
- note: the number of columns of A equals the number of rows of B .
- identity matrix I_{n}
- size $n \mathrm{x} n$
- all zeros except for $a_{1,1}=a_{2,2}=a_{3,3}=\ldots=1$

$$
A=\left[\begin{array}{lll}
7 & 2 & 4 \\
6 & 5 & 0
\end{array}\right] \quad B=\left[\begin{array}{ccc}
9 & 3 & 0 \\
-1 & 2 & 8
\end{array}\right] \quad C=\left[\begin{array}{cc}
1 & 3 \\
-2 & 5 \\
2 & 0
\end{array}\right] \quad D=\left[\begin{array}{ll}
\mathrm{x} & 1 \\
2 & 5
\end{array}\right]
$$

1. Use the above matrices to compute the following.
(a) $A C=$
(b) $B D=$
(c) $D B=$
(d) $D^{2}=$
(e) $2\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 4 & 8 \\ 2 & 3 & 0 \\ 0 & 1 & 5\end{array}\right]=$
(f) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 4 & 8 \\ 2 & 3 & 0 \\ 0 & 1 & 5 \\ 8 & 2 & 5\end{array}\right]=$
2. A dietitian plans a meal around two foods. The number of units of vitamin A and vitamin C in each ounce of these foods is represented by the matrix M.

Food I Food II
Food I Food II
Food I Food II
$M=\begin{aligned} & \text { Vitamin A } \\ & \text { Vitamin C }\end{aligned}\left[\begin{array}{cc}30 & 90 \\ 7 & 45\end{array}\right] \quad B=\left[\begin{array}{ll}5 & 2\end{array}\right] \quad L=\left[\begin{array}{ll}9 & 4\end{array}\right]$
The matrices B and L represent the amount of each food (in ounces) consumed by the girl at breakfast and lunch, respectively. Explain the meaning of the entries in these computations..
(a) $L M=\left[\begin{array}{ll}298 & 990\end{array}\right]$
(b) $M B^{T}=\left[\begin{array}{l}330 \\ 125\end{array}\right]$

Section 5.3: The inverse of a Matrix

- the matrix must be square.
- NOT all square matrices have an inverse.
- the inverse of A is denoted A^{-1}
- $A A^{-1}=A^{-1} A=I$
- A system of equations may be written as a matrix equation: $\mathrm{AX}=\mathrm{B}$
- A is the coefficient matrix
- X is the variable matrix
- If A has an inverse, then the solution is $X=A^{-1} B$.
- Matrix A not having an inverse does not imply that the system of equations has no solution. It means that you need to try another method to solve the problem.

3. If $A=\left[\begin{array}{ll}5 & 1 \\ 5 & 2\end{array}\right]$ find A^{-1}
4. If $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 3 & 2 & 1 \\ 2 & 1 & 2\end{array}\right]$ find A^{-1}
5. If $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 4 & 2 & 3 \\ 2 & 1 & 2\end{array}\right]$ find A^{-1}
6. Determin if the matrices A and B are inverses of each other.

$$
A=\left[\begin{array}{ccc}
1 & 2 & \mathrm{x} \\
0 & 5 & 2 \\
0 & 2 & 1
\end{array}\right] \quad B=\left[\begin{array}{ccc}
1 & 2 x-2 & 4-5 x \\
0 & 1 & -2 \\
0 & -2 & 5
\end{array}\right]
$$

7. Answer the following using this system of equations. $2 x+y-z=1$

$$
3 x+y-z=4
$$

(a) Write down the coefficient matrix.
(b) Write the system of equations as a matrix equation.
(c) Solve the system of equations using matrices.
8. True or False. A system of equations is represented by the matrix equation $A X=B$. If the coefficient matrix, A, does not have an inverse then the system of equations does not have a solution.
9. Solve for the matrix X. Assume that all matrices are square and all needed inverses are possible.
(a) $B X=E-C X$
(b) $X J+X A=K$

