Week in Review-Additional Chapter 5 Material

1. (a) $\left[\begin{array}{cc}11 & 31 \\ -4 & 43\end{array}\right]$
(b) not possible since B has 3 columns and D has only two rows.
(c) $\left[\begin{array}{ccc}9 x-1 & 3 x+2 & 8 \\ 13 & 16 & 40\end{array}\right]$
(d) $\left[\begin{array}{cc}x^{2}+2 & x+5 \\ 2 x+10 & 27\end{array}\right]$
(e) $\left[\begin{array}{ccc}2 & 8 & 16 \\ 4 & 6 & 0 \\ 0 & 2 & 10\end{array}\right]$
(f) not possible.
2. (a) The numbers in the matrix LM do not represent any usable information.
The first number in the matrix LM is found by the computation $9 * 30+4 * 7$. The 9 is the number of ounces of Food I and 30 is the number of units of vitamin A in each ounce of Food I giving a result of 270 which is the number of units of Vitamin A eaten for lunch. The 4 is the number of ounces of Food II and the 7 is the number of units of vitamin C in each ounce of Food I giving a result of 28 which has no meaning whatsoever.
(b) The numbers in $M B^{T}$ are the number of units of Vitamin A (330) and Vita$\min \mathrm{C}(125)$ eaten at breakfast.
3. $\left[\begin{array}{cc}0.4 & -0.2 \\ -1 & 1\end{array}\right]$
4. $\left[\begin{array}{ccc}3 & -1 & -1 \\ -4 & 2 & 1 \\ -1 & 0 & 1\end{array}\right]$
5. no inverse exists.
6. yes. If you compute $A B$ or $B A$ you get the identity matrix.
7. (a) $\left[\begin{array}{ccc}2 & 0 & 1 \\ 2 & 1 & -1 \\ 3 & 1 & -1\end{array}\right]$
(b) $\left[\begin{array}{ccc}2 & 0 & 1 \\ 2 & 1 & -1 \\ 3 & 1 & -1\end{array}\right]\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y} \\ \mathrm{z}\end{array}\right]=\left[\begin{array}{l}2 \\ 1 \\ 4\end{array}\right]$
(c) $A=\left[\begin{array}{ccc}2 & 0 & 1 \\ 2 & 1 & -1 \\ 3 & 1 & -1\end{array}\right], B=\left[\begin{array}{l}2 \\ 1 \\ 4\end{array}\right]$ and $X=A^{-1} B=\left[\begin{array}{c}3 \\ -9 \\ -4\end{array}\right]$
Answer: $x=3, y=-9$, and $z=-4$
8. This statement is false. The system of equations given below has a coefficient matrix that is not square. Thus the equation $A X=B$ can not be solved by matrix inverses. The system of equations does have a solution and it can be found using ref.

$$
\begin{array}{r}
2 x+z=2 \\
2 x+y-z=1 \\
3 x+y-z=4 \\
7 x+2 y+z=7
\end{array}
$$

9. (a) $X=(B+C)^{-1} * E$
(b) $X=K *(J+A)^{-1}$
