Week in Review \# 8

1. $x=$ the number of senior tickets sold.
$y=$ the number of adult tickets sold.
$z=$ the number of children tickets sold.
$x+y+z=700$
$6 x+8 y+3.5 z=3512.5$
$3 y=z$
2. $x=$ the number of Boeing 747s bought.
$y=$ the number of Boeing 777s bought.
$z=$ the number of Airbus A321s bought.
$x+y+z=11$
$400 x+300 y+200 z=3200$
$200 x+160 y+60 z=1540$
3. $x=$ the amount invested in low-risk stocks.
$y=$ the amount invested in high-risk stocks.
$z=$ the amount invested in bonds.
$x+y+z=82000$
$y=x+z$
$0.08 x+0.15 y+0.04 z=9050$
4. (a) no solution
(b) $x=9, y=10$, and $z=6$
(c) $x=2-4 z$
$y=9-5 z$
$z=$ any number
(d) $x=7-2 y-2 w$
$z=3-4 w$
$y=$ any number
$w=$ any number
(e) $x=4, y=2$, and $z=8$
5. The row operations that need to be performed are: $R_{2}+5 R_{1} \rightarrow R_{2}$ and $R_{3}+(-4) R_{1} \rightarrow R_{3}$
$\left[\begin{array}{ccc|c}1 & 0 & 9 & 12 \\ 0 & 2 & 46 & 63 \\ 0 & 2 & -39 & -40\end{array}\right]$
6. $\left[\begin{array}{ccc|c}3 & 0 & 23 & 17 \\ 7 & 11 & 39 & 25 \\ 10 & 0 & 1 & 16 \\ 0 & 5 & 6 & 1\end{array}\right]$
7. (a) first rewrite the equations as shown.
$3 x+y=9$
$x-y+z=4$
$3 x+z=11$
$4 x-y+2 z=15$
$\left[\begin{array}{ccc|c}3 & 1 & 0 & 9 \\ 1 & -1 & 1 & 4 \\ 3 & 0 & 1 & 11 \\ 4 & -1 & 2 & 15\end{array}\right] \xrightarrow{\operatorname{rref}}\left[\begin{array}{lll|l}1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0\end{array}\right]$
Answer: $x=2, y=3$, and $z=5$
(b) $\left[\begin{array}{ccc|c}1 & 3 & 1 & 10 \\ 2 & 7 & -1 & 21 \\ 4 & 13 & 1 & 41\end{array}\right] \xrightarrow{\operatorname{rref}}\left[\begin{array}{ccc|c}1 & 0 & 10 & 7 \\ 0 & 1 & -3 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$

Answer:
$x=7-10 z$
$y=1+3 z$
$z=$ any number.
note: no restrictions can be placed on the parameter since this was not a word problem.
(c) $\left[\begin{array}{ccc|c}3 & 2 & 5 & 7 \\ 1 & 4 & 1 & 13 \\ 4 & -5 & 2 & -9 \\ 5 & 10 & 7 & 32\end{array}\right] \xrightarrow{\operatorname{rref}}\left[\begin{array}{lll|l}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Answer: no solution.
8. (a) Set up of the problem:
$x=$ the number of old dvds bought
$y=$ the number of semi-new dvds bought
$z=$ the number of new dvds bought.
$x+y+z=60$
$10 x+16 y+22 z=840$

Solution:
$x=20+z$
$y=40-2 z$
$z=$ any number

Now place restrictions on the parameter z. This is the mathematical process. You could also do this by inspecting the parametric solution for what values of z will make sense.
We know that the number of dvds bought must be greater than or equal to zero.

$$
\begin{array}{ccc}
x \geq 0 & y \geq 0 & z \geq 0 \\
20+z \geq 0 & 40-2 z \geq 0 & \\
z \geq-20 & 40 \geq 2 z & \\
& 20 \geq z &
\end{array}
$$

We also know that the number of dvds bought must be less than 60 .

$$
\begin{array}{ccc}
x \leq 60 & y \leq 60 & z \leq 60 \\
20+z \leq 60 & 40-2 z \leq 60 & \\
z \leq 40 & -2 z \leq 20 & \\
& z \geq-10 &
\end{array}
$$

Thus we get that $0 \leq z \leq 20$ and z must be an integer or in other words $z=$ $0,1,2,3, \ldots, 20$
(b) 21 different solutions.
9. (a) $3 d_{2,2}+2 c_{2,1}=3(5)+2(-2)=11$
(b) $\left[\begin{array}{ccc}21 & 6 & 12 \\ 18 & 15 & 0\end{array}\right]$
(c) $\left[\begin{array}{ccc}1 & -2 & 2 \\ 3 & 5 & 0\end{array}\right]$
(d) $\left[\begin{array}{ccc}25 & 8 & 4 \\ 4 & 9 & 16\end{array}\right]$
(e) $\left[\begin{array}{ccc}-15 & -6 & 12 \\ 22 & 7 & -32\end{array}\right]$
(f) not possible, wrong sizes.
(g) $\left[\begin{array}{cc}-9 & 3 \\ -14 & 15 \\ 2 & 0\end{array}\right]$
10. simplify the left and right side.
$\left[\begin{array}{cc}19 & 8 \mathrm{x}-3 \mathrm{y} \\ 4 \mathrm{y}-18 & 10\end{array}\right]=\left[\begin{array}{cc}19 & -28 \\ \mathrm{x} & 10\end{array}\right]$
Now solve
$8 x-3 y=-28$
$4 y-18=x$
Answer: $x=-2, y=4$

