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Abstract

In this paper, we address analytically and numerically the inversion
of the integral transform (cone or Compton transform) that maps a
function on R3 to its integrals over conical surfaces. It arises in a
variety of imaging techniques, e.g. in astronomy, optical imaging, and
homeland security imaging, especially when the so called Compton
cameras are involved.

Several inversion formulas are developed and implemented numer-
ically in 3D (the much simpler 2D case was considered in a previous
publication).

Introduction

In this paper, we address analytic and numerical aspects of inversion of the
integral transform that maps a function on Rn to its integral over conical
surfaces (with main concentration on the 3D case, while the much simpler
2D case was treated in [37]). It arises in a variety of imaging techniques, e.g.
in optical imaging [12], but most prominently when the so called Compton
cameras are used, e.g. in astronomy, SPECT medical imaging [11,33], as well
as in homeland security imaging [1,2,19,39]. We will call it cone or Compton
transform (in 2D, the names V-line transform and broken ray transform are
also used),
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Being already used in astronomy, the application of Compton cameras
in nuclear medicine was first proposed in [11] as an alternative to gamma
(or Anger) cameras used in medical SPECT (Single Photon Emission To-
mography) imaging. The drawback of conventional gamma cameras is that
they utilize mechanical collimation in order to determine the direction of an
incoming gamma photon. The signal acquired by a gamma camera is weak
because only the γ-rays approaching the detector in a very small angle of
directions (see Fig. 1(a)) can pass through the collimator [6]. In addition,
the camera must be rotated to obtain projections from different directions.

On the other hand, Compton cameras make use of the Compton scatter-
ing effect (see Fig. 1(b)) to locate the radioactive source. The absence of
mechanical collimation resolves the issue of low efficiency and the need for
rotating the camera. It also facilitates the design of hand-held devices [23].

(a) (b)

Figure 1: Principles of mechanical collimation (a) and Compton scattering
(b).

A Compton camera consists of two parallel position and energy sensitive
detectors (see Fig. 2(a)). When the incoming gamma photon hits the cam-
era, it undergoes Compton scattering in the first detector (scatterer) and
photoelectric absorption in the second detector (absorber). In both interac-
tions, the positions u and v and the energies E1 and E2 of the photon are
recorded. The scattering angle ψ and a unit vector β are calculated from the
data as follows (see e.g. [11]):

cosψ = 1− mc2E1

(E1 + E2)E2

β =
u− v
|u− v|

. (1)

Here, m is the mass of the electron and c is the speed of light.
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(a) (b)

Figure 2: Schematic represantation of a Compton camera (a) and a cone in
2D (b).

From the knowledge of the scattering angle ψ and the vector β, we can
conclude that the photon originated from the surface of the cone with central
axis β, vertex u and opening angle ψ (see Fig. 2(a)). Therefore, although the
exact incoming direction of the detected particle is not available, one knows
a surface cone of possible directions. One can argue that the data provided
by Compton camera are integrals of the distribution of the radiation sources
over conical surfaces having vertex at the detector. The operator that maps
source intensity distribution function f(x) to its integrals over these cones is
called the cone or Compton transform. The goal of Compton camera imaging
is to recover source distribution from this data [1].

In the Compton camera imaging applications mentioned above, the vertex
of the cone is located on the detector array, while in some other applications
the vertices are not restricted, although some other conditions are imposed
on the cones. Also, in the Compton case, the data from all cones emanating
from a given detector position is collected, while in some other applications
only some cones (e.g., those with a prescribed axial direction) with a given
vertex are involved. Having the Compton imaging in kind, we thus follow
the started in [37] line of studying analytic and numerical properties of the
general cone transform, where all cones with a given vertex are accounted for,
with the hope of obtaining consequences for more restricted version arising
in practice (e.g., in Compton camera imaging). This partially materialized
in [37] in the much simpler 2D case. Here we address the n-dimensional
situation (with main emphasis on n = 3) and implement numerically some

3



inversion formulas from [37], as well as some new ones developed below. In
particular, we address a realistic situation arising in the Compton camera
imaging.

The problem of inverting the cone transform is over-determined (the space
of 3D cones with vertices on a detector surface is five-dimensional, three-
dimensional in 2D). Without the restriction on the vertex, the dimensions
are correspondingly six and four. One thus could restrict the set of cones,
in order to get a non-over-determined problem (e.g. [3, 4, 6, 8, 16, 17, 19–21,
26,29,34,38, and references therein]). In most of these considerations only a
subset of cones with vertex at a given detector is used. This means that most
of the information already collected by this Compton camera is discarded.
However, when the signals are weak (e.g. in homeland security applications
[1]), restricting the data would lead to essential elimination of the signal.
We thus intend to use the data coming from all cones converging to each
detector. We also discuss viable restrictions on detector arrays.

In order to avoid being distracted from the main purpose of this text, we
make in all theorems a severe overkill assumption that the functions in ques-
tion belong to the Schwartz space S of smooth fast decaying functions. This
allows us skip discussions of applicability of various transforms. However,
as it is in the case of Radon transform (see, e.g. [28, 31]), the results have a
much wider area of applicability, as in particular our numerical implemen-
tations show. The issues of appropriate functional spaces will be addressed
elsewhere.

The paper is organized as follows. In the next section 1, we recall briefly
some relevant transforms and their properties. In section 2, we obtain sev-
eral procedures that convert the cone data to the Radon data of the same
function. Section 3 contains the results of numerical implementation of these
approaches in 3D. Remarks and conclusions can be found in section 4. The
last section contains acknowledgments.

1 Definitions

A round surface cone in Rn can be parametrized by a tuple (u, β, ψ), where
u ∈ Rn is the cone’s vertex, the unit vector β ∈ Sn−1 is directed along the
cone’s central axis, and the opening angle is ψ ∈ (0, π) (see Fig. 2(a)). A
point x ∈ Rn lies on the cone iff

(x− u) · β = |x− u| cosψ. (2)
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The cone transform C maps a function f to its integrals over all circular
cones in Rn :

Cf(u, β, ψ) =

∫
(x−u)·β=|x−u| cosψ

f(x)dx, (3)

where dx is the surface measure on the cone.
In two dimensions, the equation (2) describes two rays with a common

vertex (see Fig. 2(b)), which are also called as V-lines or broken lines in the
literature. Then, the 2D cone transform of a function is its integral over these
V-lines. That is, for β = β(φ) = (sinφ, cosφ) ∈ S1, the 2D cone transform
of a function f ∈ S(R2) is given by

Cf(u, β(φ), ψ)

=

∞∫
0

[f(u+ r(sin(ψ + φ), cos(ψ + φ))) + f(u+ r(− sin(ψ − φ), cos(ψ − φ)))]dr.

(4)
We also recall that the n-dimensional Radon transform R maps a function

f on Rn into the set of its integrals over the hyperplanes in Rn. Namely, if
ω ∈ Sn−1 and s ∈ R,

Rf(ω, s) =

∫
x·ω=s

f(x)dx. (5)

In this setting, the Radon transform of f is the integral of f over the hyper-
plane orthogonal to ω at the signed distance s from the origin.

The following inversion formula is well known (e.g., [28]):

f =
1

2
(2π)1−nI−αR#Iα−n+1Rf, α < n. (6)

Here, R# is the backprojection operator [28] and Iα, α < n, is the Riesz
potential acting on a function f as

(̂Iαf)(ξ) = |ξ|−αf̂(ξ),

where f̂ is the Fourier transform of f (see e.g. [18,22,28]).
The cosine transform of a function f ∈ C(Sn−1) is defined by

Cf(ω) =
1

|Sn−1|

∫
Sn−1

f(σ)|σ · ω|dσ, (7)
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for all ω ∈ Sn−1 (see e.g. [13,31]).
We will also need to use the Funk transform (e.g., [14, 18, 30, 31]) that

integrates a function on the sphere over all great circles (hyperplane sections).
Several inversion formulas for the Funk transform exist in the literature [9,
10,14,18,30,31].

2 Various inversion formulas for the cone trans-

form

We start with a basic relationship between the cone, Radon and cosine trans-
forms:

Theorem 1 ( [37]). Let f ∈ S(Rn) and Ta be the translation operator in
Rn, defined as Taf(x) = f(x + a) for a ∈ Rn. Then, for any u ∈ Rn and
β ∈ Sn−1, we have

π∫
0

Cf(u, β, ψ) sin(ψ)dψ =
π

|Sn−1|

∫
Sn−1

Rf(ω, u · ω)|ω · β|dω = C(R(Tuf))(β),

(8)

where |Sn−1| denotes the area of the sphere Sn−1.

The proof of this relation can be found in [37].
Since the cosine transform is a continuous automorphism of C∞even(Sn−1)

(see e.g. [13, 31]), and for any f ∈ S(Rn), Rf(ω, 0) is an even function
in C∞(Sn−1), we can recover the function R(Tuf) by inverting the cosine
transform. Using the inversion formula for the cosine transform given in [31,
Chapter 5, Theorem 5.35], we obtain the formulas given in Theorem 2 below
that recover the Radon data from the cone data. Then, inverting the Radon
transform [28], one recovers the function f .

Theorem 2 ( [37]). Let f ∈ S(Rn). For any u ∈ Rn and ω ∈ Sn−1,
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(i) if n is odd,

Rf(ω, ω · u) =
Γ(n+1

2
)

2π(n+1)/2

∫
Sn−1

π∫
0

Cf(u, β, ψ) sinψdψdβ

− 2π−n/2

Γ(n
2
)
P(n+1)/2(∆S)


∫

Sn−1

π∫
0

Cf(u, β, ψ) log
1

|ω · β|
sinψdψdβ

 ,

(9)

(ii) if n is even,

Rf(ω, ω · u) =
−2n−1

Γ(n− 1)

π∫
0

Pn/2(∆S)F (Cf)(u, ω, ψ) sinψdψ, (10)

where F is the Funk transform, ∆S is the Laplace-Beltrami operator on Sn−1

acting on ω, and

Pr(∆S) = 4−r
r−1∏
k=0

[−∆S + (2k − 1)(n− 1− 2k)] .

This result, in particular, answers the question of what geometries of
Compton detectors are sufficient for (stable) reconstruction of the function
f . Indeed, formulas (9) and (10) show that it is sufficient to have for any
ω ∈ Sn−1 and s ∈ R a detector location u such that ω · u = s. This can be
rephrased in a nice geometric way:

Definition 3 (Compton Admissibility Condition). We will call an array of
Compton detectors admissible (for a given region of space), if any hyperplane
intersecting this region, intersects a detector.

So, if a set U of detectors is admissible for a region D ∈ Rn, then the
formulas (9) and (10) enable one to reconstruct the Radon transform of any
function f supported inside D, and thus f itself.

Here is an useful example of an application of the admissibility:

Proposition 4. Suppose that n = 3 and the detectors are placed on a sphere
Sr of radius r. We assume that the region for placing the object to be imaged
is the concentric sphere Sr′ of radius r′ = r − δ for some δ > 0. Then, any
curve U on Sr that satisfies the condition below is admissible:
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Any circle on Sr of radius ρ ≥
√
δ(2r − δ) intersects U .

Proof. Indeed, every plane intersecting the interior of the sphere Sr′ intersect
Sr over a circle of radius ρ ≥

√
δ(2r − δ) and thus contains at least one

detector.

Remark 5.

(i) The experience of Radon transform shows that uniqueness of recon-
struction should hold for some non-admissible sets of detectors as well,
although some (“invisible”) sharp details will get blurred in the recon-
struction (see, e.g. [22]). The corresponding microlocal analysis of this
issue will be done elsewhere.

(ii) The admissibility condition is not the minimal one. For instance, in
the situation of Proposition 4, the set of Compton data will still be
4-dimensional, and thus somewhat overdetermined. To avoid overde-
termined data, one could use a single detector, which would lead to
some sharp features of the image being blurred.

(iii) In the cases of low signal-to-noise ratio (e.g. SPECT and especially
homeland security imaging), one would prefer to use larger admissible
sets of detectors (e.g. 2D rather than 1D arrays considered in Proposi-
tion 4), which would allow introducing additional (weighted) averaging,
in order to reduce the effects of the noise.

A different approach to recovery of the Radon data from the Compton
data comes from the following known relation (see [15]) between the cosine
and Funk transforms:

(∆S + n− 1)C = F, (11)

where ∆S is the Laplace-Beltrami operator on the sphere.
Indeed, applying (∆S + n− 1) to (8), we obtain

Φ(u, β) := F (R(Tuf))(β) =
(∆S + n− 1)

π

π∫
0

Cf(u, β, ψ) sinψdψ, (12)

where ∆S acts in variable β.
We now use the inversion formula for the Funk transform given in [31,

Chapter 5, Theorem 5.37], whose application to (12) leads to the following
result.
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Theorem 6. Let f ∈ S(Rn). For any u ∈ Rn and ω ∈ Sn−1,

Rf(ω, ω · u) =
2n−1

(n− 2)!
Q(∆S)


∫

Sn−1

Φ(u, β) log
1

|ω · β|
dβ


+

Γ(n/2)

2πn/2

∫
Sn−1

Φ(u, β)dβ,

(13)

where Q(∆S) = 4(1−n)/2
(n−3)/2∏
k=0

[−∆S + (2k + 1)(n− 3− 2k)] .

In particulary, in 3D one arrives to

Corollary 7. For any u ∈ R3 and ω ∈ S2,

Rf(ω, ω · u) =
−∆S

2π


∫

Sn−1

Φ(u, β) log
1

|ω · β|
dβ


+

1

4π

∫
Sn−1

Φ(u, β)dβ.

(14)

3 Reconstructions in 3D

Some numerical results in 2-dimensions were presented in [37]. Here, we
address the much more complicated 3-dimensional case, where we develop
and apply three different inversion algorithms and study their feasibility.

Our first attempt has been to implement numerically the inversion for-
mula (9) from Theorem 2. The results were discouraging. The reason for
this failure was that (9) requires numerical computation of some singular
integrals, followed then by applying to the results a fourth order differential
operator on the sphere.

Thus we had to resort to different inversion techniques, the description
of which one finds below.

In all examples below, the detectors cover the unit sphere S2 in R3 and the
object is located inside and at some positive distance from this sphere. The
forward simulations of Compton camera data were done numerically rather
than analytically and thus involved errors, which is better for checking the
validity and stability of the reconstruction algorithms.
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3.1 Method 1: Reconstruction using spherical harmon-
ics expansions

Let us introduce the function

G(u, β) :=

π∫
0

Cf(u, β, ψ) sinψdψ.

For each fixed detector location u ∈ Rn, we can expand the function G(u, β)
of β ∈ Sn−1 into spherical harmonics Y m

l :

G(u, β) =
∞∑
l=0

N(n,l)∑
m=1

gml (u)Y m
l (β), (15)

where

gml (u) =

∫
Sn−1

G(u, β)Y m
l (β)dβ

and

N(n, l) = (n+ 2l − 2)
(n+ l − 3)!

l!(n− 2)!

(see e.g. [5, 27, 35]). Using (9), one obtains the following series inversion
formula:

Theorem 8. For any u ∈ Rn and ω ∈ Sn−1,

Rf(ω, ω · u) =
Γ(n+1

2
)

πn/2
g10(u)− 2π−n/2

Γ(n
2
)

∞∑
l=1

dlqn,l

N(n,l)∑
m=1

gml (u)Y m
l (ω), (16)

where

qn,l = 4−(n+1)/2

(n−1)/2∏
k=0

[l(l + n− 2) + (2k − 1)(n− 1− 2k)] (17)

and

dl = |Sn−2|
1∫

−1

log
1

|t|
Ll(t)(1− t2)(n−3)/2dt, (18)

with Ll being the l-th degree Legendre polynomial (see e.g. [36]).
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Proof. Plugging (15) into the second term in the right hand side of (9), we
obtain

Rf(ω, ω · u) =
Γ(n+1

2
)

2π(n+1)/2

∫
Sn−1

G(u, β)dβ

−
2P(n+1)/2(∆S)

πn/2Γ(n
2
)

∞∑
l=0

N(n,l)∑
m=1

gml (u)

∫
Sn−1

log
1

|ω · β|
Y m
l (β)dβ.

(19)

We note that

∫
Sn−1

G(u, β)dβ = 2
√
πg10(u). Then Funk-Hecke formula (see

e.g. [27]) implies that∫
Sn−1

log
1

|ω · β|
Y m
l (β)dβ = dlY

m
l (ω),

where dl is as in (18). Also, since ∆SYl = −l(l + n − 2)Yl, l = 0, 1, 2, ..., we
have P(n+1)/2(∆S)Yl = qn,lYl, where qn,l is given in (17). Hence, we get the
result.

In particular, for n = 3, we get

Corollary 9. For any u ∈ R3 and ω ∈ S2,

Rf(ω, ω · u) = π−3/2g10(u)− 1

4π2

∞∑
l=1

dlql

2l+1∑
m=1

gml (u)Y m
l (ω), (20)

where ql = (l− 1)l(l+ 1)(l+ 2) and dl = 2π

1∫
−1

log
1

|t|
Ll(t)dt with Ll being the

l-th degree Legendre polynomial.

In our numerical tests, the phantom was the characteristic function of
the 3D ball of radius 0.5 centered at the origin. The reason for considering a
radial phantom is that its Radon transform can easily be computed analyti-
cally. On the other hand, the Compton data was simulated numerically and
then used to numerically reconstruct the Radon data. The results can then
be compared with the exact (analytically computed) Radon transforms1.

1Tests on non-radial phantoms have lead to the similar results.
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Figure 3 shows the comparison of the analytically computed Radon trans-
form of the phantom (shown in red) with its reconstructions, using (20), for
varying discretization of the sphere. The number of terms considered in the
expansion (15) is shown at the top of each figure as L. In order to reduce
the effect of instability, we have taken less terms in the computation of the
Radon transform via (20). These are shown as Lt in the figures.

a

(a)
-1 -0.5 0 0.5 1

-0.5

0

0.5

1

L = 45, Lt = 10 

Approx.
Exact

(b)
-1 -0.5 0 0.5 1

-0.5

0

0.5

1

L = 50, Lt = 18 

Approx.
Exact

(c)
-1 -0.5 0 0.5 1

-0.5

0

0.5

1

L = 90, Lt = 30 

Approx.
Exact

Figure 3: The analytically computed Radon transform of the phantom
(shown in red) vs. its reconstruction from the Compton data using (20). The
reconstructions shown correspond to three different mesh sizes: the number
of points on the sphere being 1806, 7446, and 30000, from left to right.

3.2 Method 2: Reconstruction by direct implementa-
tion of Theorem 6

As we have mentioned before, the direct numerical implementation of the
formula (9) in 3D required the application of the fourth order differential op-
erator ∆S(∆S+2) on the sphere to the result of numerical implementation of
a singular integral. The authors could not make it work well. The advantage
of using (14) is that one needs to apply two second order operators acting
in different variables and with a smoothing operator sandwiched in between.
This makes such a calculation feasible.

In our numerical implementations, we used the algorithm for the discrete
Laplace-Beltrami operator given in [7]. It is based on the heat equation
used to create a point-wise convergent approximation for the Laplace-Beltami
operator on a surface. For a function f given at the set V of vertices of a
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mesh K on the 2-sphere, it is computed, for any v ∈ V , as follows:

∆h
Kf(v) =

1

4πh2

∑
t∈K

Area(t)

#t

∑
p∈V (t)

e−
‖p−v‖2

4h (f(p)− f(v)). (21)

Here, for any face t ∈ K, the number of vertices in t is denoted by #t, and
V (t) is the set of vertices of t. The parameter h is a positive quantity (akin
to the time in the heat equation), which intuitively corresponds to the size of
the neighborhood considered at each point. The authors of [7] suggest that
h can be taken to be a function of v, which allows the algorithm to adapt to
the local mesh size.

In our experiments, we used the adaptive parameter h(v) = 0.125×(the
average edge length at v). We used the same phantom as in the previous
section. Figure 4 shows the reconstructions of the Radon transform of the
phantom for varying discretization of the sphere.

(a)
-1 -0.5 0 0.5 1

-0.5

0

0.5

1 Approx.
Exact

(b)
-1 -0.5 0 0.5 1

-0.5

0

0.5

1 Approx.
Exact

(c)
-1 -0.5 0 0.5 1

-0.5

0

0.5

1 Approx.
Exact

Figure 4: The Radon transform of the phantom recovered using (14) and
(21). The reconstructions shown corresponds to three different mesh sizes:
the number of points on the sphere being 1806, 7446, and 30000, from left
to right.

These results do not seem to indicate presence of any systemic error and
thus suggest that a touch of smoothing could lead to a significant improve-
ment. This indeed happens to be the case, as Figure 5 shows.
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(a)
-1 -0.5 0 0.5 1

-0.5

0

0.5

1 Smoothed
Exact

(b)
-1 -0.5 0 0.5 1

-0.5

0

0.5

1 Smoothed
Exact

(c)
-1 -0.5 0 0.5 1

-0.5

0

0.5

1 Smoothed
Exact

Figure 5: The Radon transforms shown in Figure 4 are smoothed by a
moving average filter having span 9. The reconstructions shown corresponds
to three different mesh sizes: the number of points on the sphere being 1806,
7446, and 30000, from left to right.

3.3 Method 3: Reconstruction via approximate inver-
sion of the Cosine Transform

The formula (8) shows that availability of any cosine transform inversion
would also lead to an inversion of the cone transform, and such approximate
and exact inversions indeed exist [25, 31, 32]. We apply here the method
of approximate inverse developed in [24,25,32], which is an incarnation of a
general approach to solving inverse problems numerically. Namely, for a given
data h, the aim is to find g satisfying Cg = h. If we find a ‘Green’s function’
ψ such that Cψ = δ, then the spherical convolution h ∗ ψ of h and ψ solves
the equation Cg = h. Now, if one picks a ‘mollifier’ (an approximation to the
δ-function) δγ and “approximate Greens function” ψγ, such that Cψγ = δγ,
then one finds the approximate solution gγ = g ∗ ψγ.

In our numerical tests, we used the reconstruction kernel ψγ that was
analytically computed in [32] for a special class of mollifiers (see [32, (4.1)
and (4.10)]). We used the same phantom as in the previous sections. Figure 6
shows the reconstructions of the Radon transform of the phantom for varying
discretization of the sphere.
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(a)
-1 -0.5 0 0.5 1

-0.5

0

0.5

1 Approx.
Exact

(b)
-1 -0.5 0 0.5 1

-0.5

0

0.5

1 Approx.
Exact

(c)
-1 -0.5 0 0.5 1

-0.5

0

0.5

1 Approx.
Exact

Figure 6: The Radon transform of the phantom using the method of ap-
proximate inverse for the cosine transform. The reconstructions shown cor-
responds to three different mesh sizes: the number of points on the sphere
being 1806, 7446, and 30000, from left to right.

One notices insufficient resolution of singularity which is due to the in-
sufficiently fine approximation of δ-function by δγ chosen in [24,25,32].

3.4 Comparison of the three methods

While above we only addressed reconstructing the Radon transform of the
function in question, here we show how the three methods perform after
taking the final step of inverting the Radon transform and reconstructing
the characteristic function of the ball.

Figure 7 shows the three cross-sections of the spherical phantom and of its
reconstructions from the Radon data obtained via the three methods above.
The finest mesh on the sphere (30000 points) was used.
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Figure 7: Comparison of the three reconstruction methods. The cross-
sections by the coordinate planes are shown. (a) The phantom is the char-
acteristic function of 3d ball having radius 0.5 and center at the origin. (b)
Reconstruction via Method 1. (c) Reconstruction via Method 2. (d) Recon-
struction via Method 3.

The L∞ errors between the approximate and exact Radon transforms for
Methods 1, 2 and 3 were 2.65%, 14.18% and 15.01%, respectively. There was
no significant difference between the three methods in terms of computation
time. Thus, overall our current results indicate that overall the Method 1
outperforms the other two.

It is important to note that in all of the methods, there are parameters
that can still be optimized, namely L and Lt in Method 1, h in Method 2,
and γ in Method 3 (see [32]).
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4 Conclusion and Remarks

(i) Several new analytical techniques are developed and successfully nu-
merically implemented for inverting the Compton camera data. A
comparison of these methods is provided.

(ii) Although the algorithms surely could benefit from further improve-
ment, the feasibility of the approach has been shown.

(iii) It is argued that in the case of Compton camera imaging, reducing the
set of cones “visible” from a detector (e.g., considering only the cones
with a given axial direction), which was done in most previous studies,
seems to be a not very good idea (especially in presence of low SNR),
since this amounts to discarding the already collected data, which can
be used for stabilizing the reconstruction.

(iv) A general “admissibility” criterion for the set of detectors is formulated.
Under this condition, the formulas provided allow reconstructions for
an otherwise arbitrary geometry of detector arrays.
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