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Generalized Transforms of Radon Type

and Their Applications

Peter Kuchment

Abstract. These notes represent an extended version of the con-
tents of the third lecture delivered at the AMS Short Course “Radon
Transform and Applications to Inverse Problems” in Atlanta in
January 2005. They contain a brief description of properties of
some generalized Radon transforms arising in inverse problems.
Here by generalized Radon transforms we mean transforms that
involve integrations over curved surfaces and/or weighted integra-
tions. Such transformations arise in many areas, e.g. in Single
Photon Emission Tomography (SPECT), Electrical Impedance To-
mography (EIT) thermoacoustic Tomography (TAT), and other
areas.

1. Introduction

The notes by E. T. Quinto in this volume have already introduced
the reader to the properties of the Radon transform and its role in
inverse problems, in particular in computerized tomography. In this
text we show that in some applications one has to work with weighted
(attenuated) transforms of Radon type, where the lines (planes) of inte-
gration are equipped with certain weights that need to be incorporated
into the transform. On the other hand, there are also important ap-
plied problems, where the data provides the values of the integrals of
an unknown quantity over a family of curved manifolds (e.g., spheres)
rather than lines or planes. These manifolds of integrations might be
equipped with some weights as well. Such transforms have been studied
in rather general situation (e.g., [19, 21, 22, 33, 34, 39, 51, 52, 54,

55, 58, 59, 60, 119, 120, 123, 124, 125, 128, 129, 130, 135] and
references therein), but a richer theory can be developed for more spe-
cific examples. As it often happens, transforms arising in applications,
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2 PETER KUCHMENT

have a special structure that allows for a deep and beautiful analytic
theory.

Although this does not exhaust all situations that fall under our
topic, we will restrict ourselves to the following three (probably the
most prominent) areas: Thermoacoustic Tomography (TAT), where in-
tegrations over spheres are involved, Single Photon Emission Computed
Tomography (SPECT), where weighted transforms arise, and Electri-
cal Impedance Tomography (EIT), where hyperbolic Radon transforms
appear naturally.

In these notes we are unable to provide a comprehensive bibliog-
raphy (which would take at least as much space as the whole notes).
Apologies are extended to the authors whose work should have been,
but was not mentioned explicitly.

2. Thermoacoustic tomography and the circular Radon

transform

Tomographic methods of medical imaging, as well as of industrial
non-destructive evaluation and geological prospecting are based on the
following general procedure: one sends towards a non-transparent body
some kind of a signal (acoustic or electromagnetic wave, X-ray, visual
light photons, etc.) and measures the wave after it passes through the
body. Then one tries to use the measured information to recover the
internal structure of the object of study. The common feature of most
traditional methods of tomography is that the same kinds of physi-
cal signals are sent and measured. Each of the methods has its own
drawbacks. For instance, sometimes when imaging biological tissues,
microwaves and optical imaging might provide good contrasts between
different types of tissues, but are inferior in terms of resolution in com-
parison with ultrasound or X-rays. This, in particular, is responsible for
the common low resolution of optical or electrical impedance tomogra-
phy. On the other hand, ultrasound, while giving good resolution, often
does not do a good job in terms of contrast. One of the recent trends
is to combine different types of waves in a single imaging process. The
best developed example is probably the thermoacoustic tomography
(TAT or TCT) and its sibling photoacoustic tomography (PAT) (e.g.,
[76],[148]-[151]). In TAT, a short microwave pulse is sent through a
biological object. At each internal location x certain energy H(x) is
absorbed. It is known, that cancerous cells often absorb several times
more microwave (or radio frequency) energy than the normal ones,
which means that significant contrast is expected between the values of
H(x) at tumorous and healthy locations. The absorbed energy causes
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a thermoelastic expansion, which in turn creates a pressure wave. This
wave can be detected by ultrasound transducers placed at the edges
of the object. Now the former weakness of ultrasound (low contrast)
becomes an advantage. Indeed, in many cases (e.g., for mammogra-
phy) one can assume the sound speed to be approximately constant.
Hence, the sound waves detected by a transducer at any moment t
of time are coming from points at a constant distance (depending on
time t of travel and the sound speed) from its location. The strength
of the signal coming from a location x reflects the energy absorption
H(x). Thus, one effectively measures the integrals of H(x) over all
spheres centered at the transducers’ locations. In other words, in or-
der to reconstruct H (and thus find cancerous locations) one needs to
invert a generalized Radon transform that provides the integrals of H
over spheres centered at all available transducers’ locations [76], [148]-
[151]. This method amazingly combines advantages of two types of
radiation, while avoiding their deficiencies.

This discussion motivates the study of the following “circular” Radon
transform1. Let f(x) be a continuous function on R

n, n ≥ 2. We define
its circular Radon transform as

Rf(p, r) =

∫

|y−p|=r

f(y)dσ(y),

where dσ(y) is the surface area on the sphere |y − p| = r centered at
p ∈ R

n.
The mapping from f to Rf is overdetermined, since the dimension

of pairs (p, r) is n + 1, while the function f depends on n variables
only. This suggests to restrict the centers p to a set (hypersurface) S ⊂
R

n, while not imposing any restrictions on the radii2. This restricted
transform will be denoted by RS:

RSf(p, r) = Rf(p, r)|p∈S.

Among central problems that naturally arise are:
• Uniqueness of reconstruction: is the information collected for
a given set S of centers sufficient for the unique determination of the
function f? In other words, is the operator RS injective (on a specific
function space)?

1Numerous other reasons to study this transform are known, e.g. Radar and
Sonar imaging, approximation theory, PDEs, potential theory, complex analysis,
etc. [2, 93]. Although in dimensions higher than two one should probably use the
word “spherical” rather than “circular,” we will use for simplicity the latter. This
should not create any confusion.

2The most popular in TAT geometries of these surfaces (curves) S of centers
(transducers) are spheres, planes, and cylinders [148]-[150].
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• Inversion formulas and algorithms for RS.
• Stability of the reconstruction.
• Description of the range of the transform: what conditions must
ideal data satisfy?

All these questions have been resolved for the classical Radon trans-
form [66, 102, 104]. However, they are more complex and not too well
understood for the circular Radon transform.

We will now provide a brief survey of the known results and ap-
proaches to the problems listed above.

2.1. Injectivity. Here one is interested in finding which sets S
guarantee uniqueness of reconstruction of a function f from its trans-
form RS. We introduce the following

Definition 1. The circular transform R is said to be injective on
a set S (S is a set of injectivity) if for any compactly supported
continuous function f on R

n the condition Rf(p, r) = 0 for all r ≥ 0
and all p ∈ S implies f ≡ 0. In other words, S is a set of injectivity,
if the mapping RS is injective on Cc(R

n).

The condition of compactness of support on f is essential in what
follows. The situation is significantly different and much harder to
study without compactness of support (or at least a sufficiently fast
decay) [1, 2]. Fortunately, tomographic problems usually yield com-
pactly supported functions.

One now arrives to the
Problem: Describe all sets of injectivity for the circular Radon trans-
form R on Cc(R

n). In other words, we are looking for a description
of those sets of positions of transducers that enable one to recover
uniquely the energy deposition function.

This problem has been around in different guises for quite a while
(e.g., [2, 39, 90, 91] and references therein). One of its most useful
reformulations is the following: finding all possible nodal sets of oscil-
lating infinite membranes. Namely, consider the initial value problem
for the wave equation in R

n:

(1) utt −4u = 0, x ∈ R
n, t ∈ R

(2) u|t=0 = 0, ut|t=0 = f.

Then

u(x, t) =
1

(n− 2)!

∂n−2

∂tn−2

∫ t

0

r(t2 − r2)(n−3)/2(Rf)(x, r)dr, t ≥ 0.
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Hence, it is not hard to show [2] that the original problem is equivalent
to the problem of recovering ut(x, 0) from the value of u(x, t) on subsets
of S × (−∞,∞).

Lemma 2. [2] A set S is a non-injectivity set for Cc(R
n) if and

only if there exists a non-zero compactly supported continuous function
f such that the solution u(x, t) of the problem (1)-(2) vanishes for any
x ∈ S and any t.

In other words, injectivity sets are those for which the motion of
the membrane over S gives complete information about the motion of
the whole membrane. An analogous relation holds also for solutions of
the heat equation [2].

So, what could the injectivity sets be? As it turns out, they are
more common than the non-injectivity ones. So, one should better
try to describe the “bad” (i.e., non-injectivity) sets, i.e. sets of trans-
ducers’ positions from which one cannot recover the energy absorption
function.

A simple example of a non-injectivity surface is any hyperplane S.
Indeed, if f is odd with respect to this plane, then clearly RSf = 0,
so one cannot recover f from the data. It is known that in this case
the odd functions are the only ones “eliminated” by RS [37, 73]. In
particular, any line on the plane is a non-injectivity set. There are other
options as well. Let us consider for any N ∈ N the Coxeter system ΣN

of N lines L0, . . . , Ln−1 in the plane passing through the origin and
forming equal angles π/N : Lk = {teiπk/n| −∞ < t < ∞}. There exist
non-zero compactly supported functions that are simultaneously odd
with respect to all lines ΣN (look at the Fourier series expansion with
respect to the polar angle). So, ΣN is a non-injectivity set as well.
Any rigid motion ω preserves non-injectivity property, so ωΣN is also
a non-injectivity set. It is not that obvious, but still not hard to prove
that adding a finite set F does not change this property. The following
remarkable theorem was conjectured by V. Lin and A. Pincus [90, 91]
and proven by M. Agranovsky and E. Quinto [2]:

Theorem 3. [2] A set S ⊂ R
2 is an injectivity set for the circular

Radon transform on Cc(R
2), if and only if it is not contained in any

set of the form ω(ΣN)
⋃
F , where ω is a rigid motion in the plane and

F is a finite set.



6 PETER KUCHMENT

The beautiful proof of this theorem in [2] is based on microlocal
analysis and geometric properties of zeros of harmonic polynomials3.
There are, however, some comments about non-injectivity sets that can
be made without heavy techniques being involved.

The first important observation concerning non-injectivity sets is
that they must be algebraic (i.e., sets of zeros of non-zero polynomials).
In fact, if RSf = 0 and f decays faster than any power, it is not hard
to see that the following polynomials vanish on S: Qk(x) =

∫
Rn ‖x −

ξ‖2kf(ξ)dξ. One might wonder whether they could all vanish identically
and thus imply nothing about S. It is easy to prove that this cannot
happen if the function decays exponentially.

Now applying Laplace operator one readily concludes that the low-
est degree polynomial among Qk is in fact harmonic:

Lemma 4. Let f ∈ Cc(R
n), and P = Qk0 [f ] be the minimal degree

nontrivial polynomial among Qk, then P is harmonic and vanishes on
S .

Thus, if R is not injective on S, then S is the zero set of a harmonic
polynomial.

Corollary 5. Any set S ⊂ R
n of uniqueness for the harmonic

polynomials is a set of injectivity for the transform R. E.g., if U ⊂ R
n

is any bounded domain, then S = ∂U is an injectivity set of R.

This corollary is already good enough for many practical appli-
cations. Indeed, in one of the common practical set-ups one places
transducers around a sphere S. The corollary guarantees uniqueness
of reconstruction. In fact, algebraicity implies that the data over any
open piece of the sphere has as much information as the data collected
over the whole sphere, and thus also guarantees uniqueness (albeit at
the price of significantly reduced stability of reconstruction [93, 151]).

The conjecture that describes non-injectivity sets in higher dimen-
sions (still for compactly supported functions) is:

Conjecture 6. [2] A set S ⊂ R
n is an injectivity set for the

circular Radon transform on Cc(R
n), if and only if it is not contained

in any set of the form ω(Σ)
⋃
F , where ω is a rigid motion of R

n, Σ
is the zero set of a non-zero homogeneous harmonic polynomial, and
F is an algebraic subset in R

n of co-dimension at least 2.

3Albeit some simpler approaches have started to appear, e.g. in [46, 5], there
is still no alternative proof of this theorem available, except some partial solutions
in [5].
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For n = 2, this boils down to Theorem 3.
The uniqueness problem remains unresolved in dimensions higher

than 2, and even in dimension 2 it is not resolved for functions that
are not compactly supported (albeit possibly very fast decaying). For
instance, there is a belief that the statement of Theorem 3 should hold
true for functions that decay fast, say super-exponentially. So far no-
one has succeeded in proving this. In [1], a limited scope question
was posed: does the claim of Corollary 5 concerning the boundaries of
bounded domains hold true for functions from Lp(Rn), p < ∞? The
answer, given by the following theorem, shows that the situation is
non-trivial:

Theorem 7. [1] The boundary S of any bounded domain in R
n

is uniqueness set for f ∈ Lp(Rn) if p ≤ 2n
n−1

. This is not true when

p > 2n
n−1

, where spheres provide counterexamples.

A new approach based on the wave equation interpretation that
we have mentioned above and which promises possible new advances
in this problem, is introduced in [46] (see also its further development
in [5]; an early indication of this technique can be found in [1]). It
uses essentially only the finite speed of propagation and domain of
dependence for the wave equation. It boils down to the following idea:
one has a free infinite oscillating membrane, but a (non-injectivity) set
S stays fixed (nodal). Thus, one can also adopt a point of view that
the membrane is just fixed along S. In this interpretation, the waves
have to bypass S, while on the other hand the membrane is free and
the waves are free to go without any obstacle. This sometimes gives
a contradiction between two times of arrival, which in turn eliminates
some sets S as possible non-injectivity sets.

2.2. Inversion. When S is a uniqueness set (e.g., a sphere) one is
interested in reconstruction formulas for recovery of f from its trans-
form RSf . There are very few examples when such a formula is known,
e.g. when S is a plane. Although in this case, as we know, there is
no uniqueness, functions that are even with respect to S, or func-
tions that are supported on one side of S can be reconstructed (e.g.,
[6, 38, 51, 53, 104, 116]). For the most interesting for TAT case of S
being a sphere, inversion algorithms using special functions expansions
are known (see [6, 38, 42, 51, 104, 105, 109, 116] and references
therein concerning all these inversion formulas). However, analytic for-
mulas (e.g., of backprojection type similar to the ones for the standard
Radon transform) had not been known until recently. In [46], such
explicit formulas were derived for odd dimensions under the condition



8 PETER KUCHMENT

that the unknown function is supported inside of the sphere S (which
is not a restriction for TAT). The 3D version of one of the results of
[46] is presented below:

Theorem 8. Let f be a smooth function supported in the unit ball
centered at the origin in R

3. Then for any x in this ball, the following
reconstruction formulas hold true:

(3)

f(x) = − 1
8π2

∫
|p|=1

1
|x−p|

∂2RS

∂r2 (p, |x− p|)dp

= − 1
8π2 ∆x

∫
|p|=1

1
|x−p|

RS(p, |x− p|)dp.

Here the set of centers S is the unit sphere centered at the origin.

Notice that if the function is not supported inside the unit ball, the
formula would give its incorrect values even inside the ball.

Such formulas for 2D and higher even dimensions are still not
known. However, it is easy to write approximate formulas (para-
metrices) either by using ideas of microlocal analysis in the spirit of
[19, 82, 106] or just by mimicking the Radon case. Microlocal anal-
ysis of such formulas usually shows that they recover the singularities
of the function correctly, albeit they do not reconstruct the values of f
precisely. Simple iterative correction procedures significantly improve
the quality of reconstruction and seem to provide reconstructions ade-
quate for practical purposes (e.g., [148]-[151]).

One should also mention an important analytic tool, unfortunately
not that well known in the applied community, the so called κ-operator
developed in I. Gelfand’s school (one can find its description for in-
stance in [50, 51]). It provides a unified approach to inverting various
Radon type transforms.

2.3. Stability of reconstruction. The microlocal analysis (i.e.,
in terms of wave front sets) approach, similar to the one used for singu-
larity detection in the Radon transform (see the lectures by E. T. Quinto
in this volume), provides the general answer of what can and what can-
not be stably reconstructed. Notice that uniqueness results by them-
selves do not guarantee stability. For instance, as we have mentioned
before, a small portion of the sphere covered by transducers guarantees
uniqueness of reconstruction. However, most of the sharp details will
disappear, since their reconstruction is unstable. Namely, the following
rule describes in general the situation. If at each point of the object to
be reconstructed and for each line passing through this point there is
a transducer located on this line, then reconstruction of the object can
be made as stable as from the regular Radon transform data. However,
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if there is a line through a point that does not pass through any trans-
ducer’s location, then any possible boundary between tissues at this
point that is normal to the line, will be blurred in the reconstructed im-
age. One can find further details for the case of the standard Radon (or
X-ray) transform in [127], for attenuated transforms in [74, 75, 82],
and for circular transforms in [93, 151].

2.4. Range description. Knowing the range of the transform RS

could be very useful. For instance, the range theorems for the Radon
transform have been used to correct errors in measured data, to com-
plete incomplete data, and for other purposes. There is no such result
obtained yet for the circular transform. The paper [117] contains a
series of range conditions for the case of S being a sphere, albeit it
is unknown yet whether this set of conditions is complete. As for the
standard Radon transform, the conditions found in [117] are not hard
to derive, it is their completeness that still is not known. Indeed, let
S be the unit sphere in R

n centered at the origin and we know the
function g(p, r) =

∫
|x−p|=r

f(x)dx for any p ∈ S. Then for any natural k

we immediately conclude that the momentum

(4) Qk(p) =

∞∫

0

r2kg(p, r)dr =

∫

Rn

(|x|2 − 2x · p+ |p|2)kf(x)dx,

viewed on the unit sphere, is a polynomial of degree k. This gives us a
series of necessary conditions.

2.5. Implementation. We finish this section with examples of
reconstructions from synthesized, as well as real data. These results
and figures are borrowed from [151].

Fig. 1 shows a mathematical phantom that was used for recon-
structions shown in the next picture.

Figure 1. A mathematical phantom
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Fig. 2 shows reconstructions of the phantom using different amounts
of data in different columns. Namely, the detectors were placed corre-
spondingly along an arc of approximately 90 degrees in the first quad-
rant, an arc containing two first quadrants, and finally a 360 degrees
arc. The blurred parts of the boundaries are due to the limited view,
which agrees with the microlocal analysis of the problem (see the dis-
cussion in the stability sub-section). Namely, a part of the boundary is
blurred when its normals do not contain any detector locations. One
can see how the existence of blurred parts depends on the detector arc.
Different rows represent different reconstruction methods (see details
in [151]).

Figure 2. TAT reconstructions from the phantom data

In Fig. 3 one can see the photograph of a physical phantom (a piece
of meat immersed into fat) and its reconstructions from the experimen-
tally measured TAT data (measurements were performed in Prof. L.
Wang’s Optical Imaging Lab at Texas A& M University). We show
TAT reconstructions that used limited data (left to right: detection
arcs of 92 degrees, 202 degrees, and 360 degrees). The blurred parts of
the boundaries again behave according to the theory.
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Figure 3. TAT reconstructions from experimental data

3. Emission tomography and attenuated Radon transform

Emission tomography deals with imaging of self-radiating bodies
(as opposite to transmission imaging methods, where the source of
radiation is outside of the object to be imaged). Let us describe briefly
the main principle of the so called Single Photon Emission Computed
Tomography (SPECT), a popular method of medical diagnostics (one
can find more details in [28, 68, 102, 104])4. In SPECT, a patient is
given a medication labelled by a radionuclide. The resulting emission
is observed outside the body by collimated detectors that allow in only
narrow beams of radiation (see Fig. 4). The goal is by measuring

Figure 4. Single Photon Emission Computed Tomography

4We will consider here the 2D version, i.e. only the beams that belong to a
specific plane will be taken into account. There has been a recent activity in 3D
SPECT reconstructions that do not reduce to layer-by-layer 2D procedures, e.g.
[86, 107, 147].
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the intensity of the outgoing radiation to reconstruct the interior

intensity distribution f(x) of the radiation sources5. Let µ(x) be the
linear attenuation coefficient (or just attenuation) of the body at
the location x. Due to the absorption, a beam passing through the
body, suffers losses. Assuming that effects of scatter are small, one
can solve a simple transport equation to conclude (e.g., [102]) that
the total detected intensity along a beam (straight line) L reaching the
detector is

(5) Tµf(L) =

∫

L

f(x)e−
∫

Lx
µ(y)dydx.

Here Lx is the segment of the line L between the emission point x
and the detector and dy denotes the standard linear measure on L.
The operator Tµ is said to be the attenuated Radon transform

with attenuation µ(x) of the function f(x). One can make the formula
above a little more specific by parametrizing the lines. Namely, let ω
be the unit vector normal to the direction of L, ω⊥ be its 90o degrees
counterclockwise rotation, and s be the signed distance from the origin
to L. Then the line L consists of points sω + tω⊥, t ∈ R. Now

(6) Tµf(ω, s) =

∫ ∞

−∞

f(sω + tω⊥)e−
∫ ∞

t
µ(sω+τω⊥)dτdt.

In contrast with the standard Radon transform f →
∫

L
f(x)dx, the

resulting function depends on the orientation of the line L 6.
It is often assumed that the attenuation µ is constant inside the

body and zero outside. If the body is convex and of a known shape,
then it is easy to check (this was discovered first in [144]) that by a
multiplication by a known function the attenuated transform can be
reduced to a simpler one, called the exponential Radon transform

of function f :

(7) Rµf(ω, s) =

∫ ∞

−∞

f(sω + tω⊥)eµtdt

(here µ is constant). For this integral to make sense, the function f(x)
needs to have exponential decay at infinity sufficient to offset the effect
of the exponential weight in the integral.

As before, the natural questions to ask about these two transforms
are:

5This problem arises not only in medical imaging, but everywhere where one
wants to reconstruct the interior of a self-radiating object, e.g. nuclear reactor, jet
engine, etc. [121, 122].

6In practice one often averages over the two orientations, thus arriving to a
function of non-oriented lines.
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• Injectivity: Can a function of a natural class be reconstructed from
its attenuated or exponential transforms?
• Inversion formulae, if injectivity is established.
• Range. Judging by the precedent of the standard Radon transform,
these operators are unlikely to be surjective in any natural function
spaces. So, what are the conditions the functions from the ranges
of these operators must satisfy? As has been mentioned before, such
knowledge is important for applications, as well as for understanding
the analytic properties of these transforms.
• Stability of inversion.
• Simultaneous reconstruction of the sources density f and

attenuation µ. This is an unusual question, which does not arise for
the standard Radon transforms. In most cases not only the value of
the intensity distribution f(x), but the attenuation coefficient µ(x) as
well is unknown. So, the question is whether it is possible to extract
any information about both functions from the values of Tµf or Rµf?

These problems will be briefly addressed below. In all cases we
will describe first what is the situation with the simpler exponential
transform, and then address the attenuated one. As it was mentioned,
we will deal almost entirely with the 2D case.

3.1. Uniqueness of reconstruction and inversion formulae.

3.1.1. Exponential transform. One of the useful properties of the
exponential transform Rµ is an analog of the projection-slice (also
called Fourier-slice) theorem known for the Radon case. Namely, if
f is compactly supported (or sufficiently fast exponentially decaying)
function on the plane, a straightforward computation of Fourier trans-
form leads to the formula

(8) R̂µf(ω, σ) =
√

2πf̂(σω + iµω⊥).

Here the hat on the left is the 1D Fourier transform with respect to
s, while on the right it stands for the 2D Fourier transform. I.e.,
projection data Rµf provides the values of the Fourier transform of
the function f on the following surface in C2:

(9) Sµ =
{
z = σω + iµω⊥| σ ∈ R, ω ∈ S1

}
⊂ C2.

This is an indication that one can try to use methods of functions
of several complex variables. Results of many studies (e.g., [3, 40,

45, 78, 79, 81, 95, 99, 113, 114]) show that the relation between
two theories is indeed very deep. For instance, Paley-Wiener theorems

that guarantee analyticity of f̂ , together with the simple claim that the
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surface Sµ is a uniqueness set for analytic functions, prove uniqueness of
reconstruction (i.e., injectivity) for the exponential Radon transform.

The first explicit inversion formula for the exponential Radon trans-
form in the plane was obtained in [145] (see also discussion in [102]).
An inversion procedure was also provided in [14]. To describe the for-
mula from [145], we introduce the dual exponential Radon transform
(exponential backprojection) R#

µ : applied to a function g(ω, s), it
produces a function on the plane according to

(10)
(
R#

µg
)
(x) =

∫

S1

eµx·ω⊥

g(ω, x · ω)dω.

Then a not very difficult calculation gives

(11) R#
−µRµf =

(
2
coshµ |x|

|x|

)
∗ f,

So, in order to reconstruct f , one needs to perform a de-convolution.
Let

(12) ζµ(σ) =

{
|σ| when |σ| > |µ|
0 otherwise

and I−1
µ (a generalized Riesz potential) be the Fourier multiplier by

ζµ(σ). Then the inversion formula from [145] reads as follows:

(13) f =
1

4π
R#

−µI
−1
µ Rµf.

There is, however, another way of looking at the inversion. Let us
start with the standard Fourier inversion formula that involves integra-

tion of f̂ over R
2:

(14) f(x) = (2π)−1/2

∫

R2

f̂(ξ)eix·ξdξ.

Rewriting it as

(15) f(x) = (2π)−1/2

∫

R2

f̂(z)ei(z1x1+z2x2)dz1 ∧ dz2,

one notices that the integration over R
2 is done of a holomorphic differ-

ential 2-form (we use here exponential decay of f and thus analiticity of

f̂). Since we know the values of f̂ on Sµ, the idea is to use Cauchy type
argument to shift the integration from R

2 to Sµ. This is not straightfor-
ward (since, in particular, the surface Sµ has a hole in it and thus is not
homological to R

2), but can be achieved [40, 45, 81, 95, 136, 137].
This, in particular, leads in [81, 137] to a variety of inversion formu-
las. In particular, it was mentioned in [81] as a peculiar remark that
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one can invert an “obviously useless” (since such media apparently do
not exist) exponential transform with the attenuation µ depending on
the direction vector ω. It has turned out recently though, that such
inversion formulas are important for some 3D SPECT scanning ge-
ometries [86, 147]. One should also notice recent results on exact
inversion of the exponential transforms with “half-view” 180 degrees
data [107, 108, 131, 132] 7. These can also be treated using the
“useless” formula from [81].

3.1.2. Attenuated transform. Problems on uniqueness of reconstruc-
tion and inversion are much harder for the full attenuated transform Tµ

(5) and have been resolved only very recently. Due to rather technical
nature of these results, we will just try to give the reader a general idea
of those, as well as main references.

The first results on uniqueness were the local ones. It was shown
in [96] that if µ ∈ C2, then the transform (5) is injective on functions
with a sufficiently small support. The idea is that when f is localized in
a small neighborhood of a point, then the weight is almost constant on
the support of the function, and thus the attenuated transform is very
close to the usual Radon transform. Now injectivity follows just from
simple operator perturbation argument (a bounded operator close to
an injective semi-Fredholm one is injective). The next significant step
was made in [43], where uniqueness was established under the condi-
tion that the diameter of the object was “not too large”. This result
was sufficient for many practical situations, e.g. in medical applications
it restricts the diameter of an object to 35.8cm. The proof was non-
trivial and involved energy estimates. A breakthrough came in recent
brilliant works [8, 110, 111], where uniqueness was proven under some
mild smoothness condition on the attenuation and with no support size
restrictions.

A similar uniqueness problem for attenuated X-ray transform in
3D and higher dimensions happens to be trivial [43]. Indeed, let a
compactly supported function be in the kernel of the transform. Tak-
ing into account only the rays that belong to a two-dimensional plane
barely touching the support of the function, one deals with the small
support 2D situation and hence can conclude that the function must be
zero. This allows one to “eat away” the whole support and to conclude
that the function is in fact equal to zero.

7The reader should recall at this point that, unlike for the Radon transform,
the exponential transform data are different at opposite locations.
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The problem of uniqueness was also considered for transforms with
more general positive weights w(x, ω):

(16)

∫
f(y + tω)w(y + tω, ω)dt

(e.g., [21, 123, 124, 126, 88]), and uniqueness results of different
types were established. However, there exists a famous counterexam-
ple due to J. Boman [20] that shows that the condition of infinite
smoothness of the weight function w alone does not guarantee unique-
ness.

Let us now discuss inversion. An explicit inversion formula was
found in ([110, 111]), while a less explicit procedure was discovered
earlier in [8] (see also [23, 30, 44, 56, 84, 85, 103] for different
derivations and implementations). Both approaches of [8, 110, 111]
look at the more fundamental transport equation rather than the at-
tenuated Radon transform itself, in order to obtain inversion formulas
and procedures. We are not able to address here the details of these
very interesting and illuminating techniques (see the recent surveys
[23, 44]). Instead, we will just provide one of the incarnations of the
inversion formula.

Let us denote by H the standard Hilbert transform and by R the
standard Radon transform on the plane. Then the inversion formula
of [110] can be written as follows:

(17) f(x) = − 1

4π
Re div

∫

S1

ωe(Dµ)(x,ω⊥)
(
e−hHehTµf

)
(ω, xω)dω,

where h = 1
2
(Id + iH)Rµ and Dµ is the so called divergent beam

transform

Dµ(ω, y + tω) =

∫ ∞

t

µ(y + τω)dτ,

This formula was implemented numerically in [56, 84, 85, 103].

3.2. Range conditions. As before, we start with the simpler case
of the exponential transform, which still leads to interesting analysis.

3.2.1. Exponential transform. The first appearance of the range
conditions for Rµ was in [14, 145]. Let f(x) be a smooth and com-
pactly supported function on the plane and g(ω, s, µ) its exponential
Radon transform with attenuation µ. Representing ω = (cosφ, sinφ)
and expanding g(ω, s, µ) into the Fourier series with respect to φ:

g(ω, s, µ) =
∑

l

gl(s, µ)eilφ,
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one can establish necessary range conditions in terms of the Fourier
transform ĝl(σ, µ) of gl(s, µ) with respect to s. It was observed in
[14, 145] that the function

(σ + µ)lĝl(σ, µ)

is even with respect to σ for any l ∈ Z. It was shown in [79, 80] that
this set of conditions is complete.

These range conditions do not have the usual momentum form. A
complete momentum type set of conditions was also found in [79, 80]:
if g(ω, s) = Rµf for some f ∈ C∞

0 (R2), then the following identity is
satisfied for any odd natural n:

(18)

∑n
k=0

(
n
k

)
d
dφ

◦
(

d
dφ

− i
)
◦ ...

◦
(

d
dφ

− (k − 1)i
) ∫ ∞

−∞
(µs)n−kg(s, ω)ds = 0.

Here i is the imaginary unit, ω = (cosφ, sinφ), and ◦ denotes compo-
sition of differential operators.

The condition (18) is not very intuitive and has been interpreted
in several different ways [3, 4, 83, 113]. Even checking its necessity
happens to be interesting, since a direct calculation shows that it is
equivalent to the following series of identities for the usual sine function
sinφ: for any odd natural n

(19)

∑n
k=0

(
n
k

) (
d
dφ

− sinφ
)
◦

(
d
dφ

− sinφ+ i
)
◦ ...

◦
(

d
dφ

− sinφ+ (k − 1)i
)

sinn−k φ = 0.

The reader might want to try to establish these identities directly [79].
These conditions have also been studied in terms of complex analy-

sis [3, 4, 113, 114]. It was shown in particular that they are essentially
equivalent to some Bernstein-Hartogs’ type theorems on extension of
separately analytic functions [3, 4, 113, 114]. One of the amazing in-
carnations of the theorem is the following: let f be a function defined
outside a disk in R

2 and such that its restriction to any tangent line to
the disk extends to an entire function of one variable. Then function
f extends from R

2 to an entire function on C
2 [3, 113, 114].

Range conditions for the exponential X-ray transforms in dimen-
sions higher than two were obtained in [4]. A nice discussion can be
found in [113, 114].

Let us mention briefly some applications of these range conditions.
They have been used for detecting and correcting some data errors
arising from hardware imperfection in SPECT [118] and for treatment
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of incomplete data problems [94]. Another interesting application is to
radiation therapy planning, which deals with the operator dual to the
exponential X-ray transform [35, 36]. Range conditions have proven
to be useful in this area as well [35, 36, 77].

3.2.2. Attenuated transform. Even before the breakthrough in in-
verting the attenuated transform was achieved, an infinite (albeit still
incomplete) set of range conditions was found [102]. We denote by H
the Hilbert transform on the line:

Hp(x) =
1

π
v.p.

∫ ∞

−∞

p(y)

x− y
dy.

Here v.p. denotes the principal value of the integral. Let f and µ belong
to the Schwartz space S(R2). Then, for k > m ≥ 0 integers, we have

(20)

∫ ∞

−∞

∫ 2π

0

sme±ikφ+0.5(I±iH)Rµ(ω,s)Tµf(ω, s)dφds = 0,

where ω = (cosφ, sinφ), I is the identity operator, and Rµ is the Radon
transform of µ.

These conditions have been used for the simultaneous recovery of
the sources f(x) and attenuation µ(x) (see [99]-[101] and discussion
below).

The recent publication [112] contains a complete set of range con-
ditions.

3.3. Recovery of attenuation. As we have discussed in the be-
ginning, simultaneous recovery of the sources density f(x) and of the
attenuation µ(x) is an important applied issue. At the first glance, this
problem looks hopeless: we are trying to recover two functions f(x) and
µ(x) of two variables with the data g = T µf being a single function of
two variables. This counting argument would be persuasive only if the
operator Tµ were close to a surjective one. However, we know that T µ

has an infinite dimensional cokernel. Thus, when µ changes, the range
could in principle rotate so much that for different values of the at-
tenuation the ranges would have zero (or a “very small”) intersection.
If this were true, then both f and µ would be recoverable or “almost
recoverable”.

In the simplest case of the exponential X-ray transform, this prob-
lem was resolved in [70, 139, 140] (see also [7]). The range conditions
were used to show that unless the function f(x) is radial, both f and
µ can be uniquely determined.

Recovery of a variable attenuation is definitely much more difficult.
As in the exponential case, the range theorems are used to this end. The
range conditions (20) have been used in order to do so [99, 100, 101].
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Papers [25, 26, 8, 110, 111, 112] contain some additional indications
on what techniques might be employed for that purpose. This issue,
however, has not yet been resolved in a satisfactory way.

3.4. Stability of reconstruction. Reconstruction using attenu-
ated or exponential Radon transform data is more unstable than in
the usual Radon case, due to the presence of exponentially growing
factors in the direct transforms and backprojections (10). However,
due to the infinite dimensionality of the co-kernel of the operator, one
has a huge freedom in modifying inversion formulas. This freedom (in
the exponential transform case) has been used to select the most sta-
ble inversion algorithms [61, 138]. This still needs to be done for the
attenuated transform (see [85] for initial considerations).

3.5. Other questions. Here the author wants to briefly mention
some other related developments.

Attenuated transforms with non-smooth attenuations were consid-
ered in [74, 75]. Such transforms arise naturally in medical imaging,
since the attenuation coefficient has discontinuities along the tissue
boundaries, which introduce artifacts into reconstruction. This effect
was studied in the papers cited above.

Effects of non-perfect collimation of detectors were treated in [78].
Exponential Radon (rather than X-ray) transforms were studied in

[136, 137].
An interesting “universal” transform that has no free parameters,

but still incorporates all exponential X-ray transforms was introduced
and studied in [40]. This transform has a lot of invariant structure
built in. Its study in particular reveals relations between the F. John’s
ultra-hyperbolic equation and boundary ∂̄-operators.

4. Electric impedance tomography and hyperbolic Radon

transform

Electrical Impedance Tomography (EIT) is a promising and inex-
pensive method of medical diagnostics and of industrial nondestruc-
tive testing (e.g., [11, 12, 13, 24, 31, 32, 133]). Here one tries to
recover the conductivity of the interior of an object (e.g., patient’s
lungs and heart). The information about the electric conductivity is
very important for medical diagnostics; it is also vital for some elec-
trical procedures, such as defibrillation; it might also provide a cheap
nondestructive evaluation technology. Here is the idea of EIT: one
places electrodes around an object, creates through them various cur-
rent patterns, and measures the corresponding boundary voltage drop
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responses (Fig. 5). Experimental and theoretical studies related to

Figure 5. EIT

EIT are very active (see [24, 31, 32, 133] and references therein).
Mathematically, the problem is much harder and less stable than the
one of X-ray CT, or MRI. In particular, in most approaches no Radon
type transform arises. We will address here only one direction, which
does involve a generalized Radon transform, and surprisingly enough,
a non-Euclidean one!

Let us describe first the mathematical formulation of EIT, which
is the so called inverse conductivity problem in 2D (analogous for-
mulations are available in higher dimensions as well). Let U ⊂ R

2

be a sufficiently smooth domain (say, a disk) with boundary Γ. The
unknown conductivity function β(x) needs to be recovered from the
following data. Given a known current function ψ on Γ, one measures
the boundary value φ of the potential. Mathematically speaking, one
solves the Neumann boundary value problem

{
∇ · (β∇u) = 0 in U
β ∂u

∂ν

∣∣
Γ

= ψ,

where ν is the unit outer normal vector on Γ and φ = u|Γ. All the pairs
(ψ, φ) are assumed to be accessible. In other words, one knows the so
called Dirichlet-to-Neumann operator Λβ : φ → ψ. One needs to solve
the nonlinear problem of recovery the conductivity β from this data.
This happens to be a singularly hard inverse problem both analytically
and numerically, not just (and not mainly) due to its nonlinearity, but
mostly due to its severe instability. The main questions, as before are
about uniqueness of reconstruction, its stability, and inversion proce-
dures.
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4.1. Uniqueness. After a long attempts and partial results, the
uniqueness problem is essentially resolved positively (e.g., see [9, 27,

72, 98, 143, 146], and references therein), while the other questions
(stability and reconstruction methods) are still under thorough inves-
tigation.

4.2. Stability. The general understanding is that the problem is
highly unstable, so there is no hope to achieve the quality of reconstruc-
tion even close to the known for other common tomographic techniques.
Indeed, as it will be in particular seen below, the problem is as unstable
as the one of de-convolving a function with a Gaussian function. Saying
this, we want to indicate that there are approaches that could possibly
stabilize the problem. For instance, one could involve some additional
available information about the image to be reconstructed, or one could
try to reconstruct some useful functionals of the image rather than im-
age’s details, or finally one could try to change the physical set-up of
EIT to improve stability of the reconstruction.

4.3. Reconstruction algorithms and the hyperbolic integral

geometry. As we have already mentioned, the EIT problem (unlike
the ones in X-ray, SPECT, PET, MRI, and TAT) is non-linear. Assum-
ing that the unknown conductivity is a small variation of a constant,
one can try to linearize the problem. This is exactly what the first
practical algorithm of D. Barber and B. Brown [11]-[13] started with.
Unfortunately, the linearized problem is still highly unstable. A study
of this algorithm done in [134] lead in [17, 18] to the understanding
that the linearized two-dimensional problem can be treated by means of
hyperbolic geometry. Consider the 2D unit disk U . We can view U as
the Poincare model of the hyperbolic plane H2 (e.g., [15, 66]). There
are some indications why the hyperbolic geometry might be relevant
for the inverse conductivity problem. Indeed, if one creates a dipole
current through a point on the boundary of U , then the equipotential
lines and the current lines form families of geodesics and horocycles in
H2 (geodesics are the circular arcs orthogonal to the boundary of the
unit disc, while horocycles are the circles tangential to that boundary).
Besides, the Laplace equation that arises in the linearized problem is
invariant with respect to the group of Möbius transformations, which
serve as motions of the hyperbolic plane. It was discovered in [17, 18]
(following analysis of [134]) that the linearized inverse conductivity
problem in U reduces to the following problem on H2: the available
data enables one to find the function RG(A ∗ β), where RG is the
geodesic Radon transform on H2, A is an explicitly described radial
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function on H2:

A(r) = const(3 cosh−4 r − cosh−2 r),

and the star ∗ denotes the (non-Euclidean) convolution on H2. Here the
geodesic Radon transform integrates along geodesics in H2 with respect
to the measure induced by the Riemannian metric on H2. Methods
of harmonic analysis (Fourier and Radon transforms and their inver-
sions) on the hyperbolic plane are well developed (e.g., [16, 66, 67,

87, 89, 92]). One hopes to use them to invert the geodesic Radon
transform, to de-convolve, and as the result recover β. In particular,
the papers mentioned above contain explicit inversion formulas for the
hyperbolic geodesic Radon transform. The formula obtained in [92]
was numerically implemented in [48] and works as nicely and stably as
the standard inversions of the regular Radon transform8.

As an illustration, we show in Fig. 6 below a numerical recon-
struction from its geodesic Radon transform of a chessboard phantom.

Figure 6. Hyperbolic reconstruction of a chessboard phantom.

The next Fig. 7 shows a similar reconstruction using a local tomog-
raphy method (Λ-tomography, see the lectures by E. T. Quinto) that
emphasizes boundaries.

So, hyperbolic Radon transforms can be computed and inverted
numerically. However, as it is discussed above, the next step of the

8By an editorial error, all pictures have been omitted in [48]. They can be
found at the URL http://www.math.tamu.edu/ kuchment/hypnum.pdf.
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Figure 7. Local hyperbolic reconstruction of a chess-
board phantom.

linearized EIT inversion needs to be de-convolution. Its numerical
implementation can be attempted by using the well studied Fourier
transform on the hyperbolic plane and its inversion [66]. The Fourier
transform acts as follows:

f(z) → Ff(λ, b) =

∫

H

f(z)e(−iλ+1)〈z,b〉dm(z),

where b ∈ ∂H2, λ ∈ R, 〈z, b〉 is the (signed) hyperbolic distance from
the origin to the horocycle passing through the points z and b, and
dm(z) is the invariant measure on H2. The inverse Fourier transform
is

g(λ, b) → F−1g(z) = const

∫ ∫
g(λ, b)e(iλ+1)〈z,b〉λ tanh(πλ/2)dλdb.

These Fourier transforms were numerically implemented in [48]. How-
ever, the deconvolution part is the one that makes the whole problem
extremely unstable. Indeed, to de-convolve, one needs to do the hyper-
bolic Fourier transform, to multiply it by an explicitly given function of
exponential growth, and then to apply the inverse Fourier transform.
Due to the exponential growth of the Fourier multiplier, such a proce-
dure is extremely unstable and allows one to recover stably only very
low frequencies, and hence to get a strongly blurred image only. So, it
should not be possible to get sharp resolution EIT, unless some radical
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additional information is incorporated (e.g., some a priori knowledge
about the image), or the physical set-up of the technique is changed.

At the first glance, the relation of the linearized inverse conductivity
problem with the hyperbolic integral geometry does not seem to work
in dimensions higher than two, due to lack of hyperbolic invariance of
the governing equations. It was a surprise then, when it was shown in
[49] that a combination of Euclidean and hyperbolic integral geometries
still does the trick.
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