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MSRI’s Core Funding Renewed by NSF
A word from Director Robert Bryant

For the past two years, we at MSRI have been engaged in preparing for and participat-
ing in the quinquennial Recompetition for National ScienceFoundation (NSF) funding
through the Mathematical Sciences Research Institutes program (RFP-NSF08565). We
submitted our proposal in February 2009, to the Division of Mathematical Sciences
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(DMS).

The proposal sought a five-year renewal of NSF funding to support the Institute’s fun-
damental mission to advance scientific research and collaboration among mathemati-
cians hosted through MSRI’s programs and workshops. The proposal made a strong
case for a substantial increase in funding over the level of the past ten years of the
NSF Core Grant. It was written by the Directorate in consultation with the Institute’s
Recompetition Committee and with the invaluable advice of Board members and stake-
holders in MSRI’s far-reaching scientific community. In August 2009, the NSF sent us
the extremely positive panel reviews of our proposal.

As part of the next step in the NSF’s Recompetition procedure, a
three-day Site Visit was held at MSRI in late September 2009.The
NSF Site Visit Team — six DMS staff members plus six outside
mathematicians — made arrangements to meet with members of
MSRI’s Directorate and others closely involved in the governance
and operation of MSRI. The Site Visit Team heard from members
of the Board of Trustees, the Scientific Advisory Committee,the
Human Resources Advisory Committee, and the Educational Ad-
visory Committee, as well as organizers and members of programs
that have been held at the Institute and MSRI Postdoctoral Fellows.

MSRI’s team, the Directorate and staff, produced a 400-pagebrief-
ing book of data and documentation that would help the Site Visit
Team get a broad overview of the daily workings of the Institute
and provide insights into the many ways that the Institute serves

(continued on page 4)
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SF Math Circle Kicks Off Fall Meetings
at New Venue with Visit from School District
Superintendent

The San Francisco Math Circle (SFMC) began its first meeting at
Mission High School by hosting the visit of San Francisco United
School District Superintendent Carlos Garcia on September13,
2010. Superintendent Garcia attended the math circle meeting, ob-
serving a room brimming with the energy of 60 middle- and high-
school students working collaboratively in groups to solvemath
problems, and he enthusiastically joined their ranks by accepting
his own SFMC T-shirt (left in the photo below, next to Mission
High School Principal Eric Guthertz).

The SFMC differs from typical math circles in its large size,and
inclusion of teachers, undergrads and graduate students. The 9/13

meeting was run by Paul Zeitz
and Brandy Wiegers, the SFMC
Director and Associate Director,
and Kentaro Iwasaki, an SFMC
leader and math teacher at Mis-
sion. MSRI Associate Director
Dave Auckly was also present.
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Random Matrix Theory, Interacting Particle Systems
and Integrable Systems

Percy Deift

The current semester program on random matrix theory (RMT),
interacting particle systems (IPS) and integrable systems(IS) is a
sequel to the highly successful program on RMT and related topics
that was held at MSRI in 1999. The late 1990s was a particularly
exciting time in RMT: general universality results for unitary en-
sembles had been established and were fresh off the press, and a
fundamental link had been established between Ulam’s longest in-
creasing subsequence problem in combinatorics and RMT, partic-
ularly the Tracy–Widom distribution for the largest eigenvalue of a
matrix from the Gaussian Unitary Ensemble. In the 1950s Wigner
had introduced RMT as a model for the scattering resonances of
neutrons off a heavy nucleus, and in the 1970s Montgomery had
established a remarkable link between the statistics of thezeros of
the Riemann zeta function on the critical line, on the one hand,
and RMT, on the other. Now, combinatorics and related areas were
in the game, and there was much anticipation of developmentsto
come. In particular, there were key conjectures concerningboth
the internal structure of RMT, such as universality conjectures, as
well as applications.

In the decade following 1999, the development of RMT has been
explosive and many key conjectures have been settled. Here are
some examples, which reflect the work of many authors:

• Universality has been established for orthogonal and sym-
plectic ensembles with very general weights, both in the bulk
and at the edge.

• Universality has been established for Wigner and related en-
sembles, both in the bulk and at the edge. The asymptotic
behavior of Toeplitz determinants with Fisher–Hartwig sin-
gularities, of the kind that arose in Onsager’s solution of the
Ising model, have been established in the general case, veri-
fying in particular the conjecture of Basor and Tracy.

• In recent work on random particle systems/random growth
models, the Asymmetric Simple Exclusion Process (ASEP)
has been shown to exhibit RMT behavior. This result is par-
ticularly striking as ASEP lies outside the class of determi-
nantal point processes. Seminal work has also been done
on solutions with RMT-characteristics of the KPZ equation,
which is believed to provide a universal model for wide
classes of random growth processes.

• Free probability theory has emerged as a powerful tool in
random matrix models, for example, in the recent proof of
the Ring Theorem for a class of invariant non-normal matrix
ensembles.

• RMT has emerged as a key tool in multivariate statistics in
the case where the number of variables and the number of
samples is comparable and large. For example, there are
now major applications of RMT to population genetics via
principal component analysis.

• Over the last year, RMT behavior has been discovered and
verified in a set of laboratory experiments on turbulence in
nematic liquid crystals.

• There have been major advances in understanding beta-
ensembles of random matrices for general beta (alternatively,
log-gases at arbitrary temperatures). In particular, the statis-
tics of the spectra of beta-ensembles have been linked in a
fundamental way to the statistics of the eigenvalues of a dis-
tinguished class of random Schrödinger operators.

• ThePainlevé Projecthas been launched. The Painlevé equa-
tions play a key role in RMT, but more generally they form
the core of modern special function theory. The goal of the
project is to foster the study of the properties of the Painlevé
functions, algebraic, analytical, asymptotic and numerical,
and to collate the information in handbooks, as was done for
the classical special functions in the 19th and 20th centuries.
(See the opinion piece in theNotices of the AMS, December
2010, for more information.)

In addition to the structural developments outlined above,there
have been many direct applications of RMT. To give one strik-
ing example: the bus delivery system in Cuernavaca, Mexico,was
found to obey RMT statistics. The bus system in Cuernavaca (as
well as many other cities in Latin America) has certain built-in dis-
tinguishing features which are designed to avoid the bunching of
buses, as well as long waits between buses.
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Distribution of the fluctuating local radius for growing clusters
of liquid crystal turbulence. The distribution function isshown
with axes properly rescaled by experimentally measured param-
eter values, so that no fitting is performed. The dashed and dot-
ted curves indicate the Tracy–Widom distribution for GUE and
GOE random matrices, respectively. Adapted from K. Takeuchi
and M. Sano,Phys. Rev. Lett.104, 230601 (2010), “Universal
fluctuations of growing interfaces: evidence in turbulent liquid
crystals.”
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Three workshops were scheduled for the Semester Program at
MSRI on RMT, IPS and IS. The first workshop, which took place
from September 13 to 17, focused on internal questions in RMT,
such as universality, and also on ideas and methods from integrable
systems, such as the Riemann–Hilbert Problem and the associated
steepest-descent method. The second workshop, the Connections
for Women Workshop, took place on September 20 and 21, and in
addition to some of the themes in the first workshop, there were
also talks on free probability and random graph theory. The third
workshop is due to take place from December 6 through 10, and
will focus mostly on the connections between RMT and random
growth processes.

Several textbooks on RMT have appeared since 2000: besides one
by the author and Dimitri Gioev (2009, Courant Institute), we men-
tion Random matrix theory, by P. J. Forrester, N. C. Snaith, and

J. J. M. Verbaarschot (2003);Random matricesby M. L. Mehta
(2004);An introduction to random matricesby G. W. Anderson, A.
Guionnet, and O. Zeitouni (2010);Skew-orthogonal polynomials
and random matrix theoryby Saugata Ghosh (2009); and books on
the application of random matrix theory to a variety of fieldssuch
as wireless communications (A. M. Tulino and S. Verdú, 2004)and
multivariate statistics (Z. Bai, Y. Chen, and Y.-C. Liang, 2009) —
not to mention numerous conference proceedings.

Key problems and conjectures remain unresolved. Prime examples
are the behavior of random band matrices and the question of uni-
versality for Last Passage Percolation-type models with arbitrary
independent waiting times. New universality classes have emerged
(Pearcey and beyond!) and new applications of RMT continue to
appear with an astonishing regularity. We look forward to the com-
ing decade in RMT with great anticipation.

Focus on the Scientist: Percy Deift

Jinho Baik and Gérard Ben Arous

Percy Deift is now the heir of a long tradition of classical and
spectral analysis at New York University’s Courant Institute of
Mathematical Sciences. In the 1980s Percy became involved in
the investigation of eigenvalue algorithms (with Luen-Chau Li,
Tara Nanda and Carlos Tomei), and later singular value algo-
rithms (with James Demmel, Luen-Chau Li and Carlos Tomei).
The focus of these investigations was the relationship between
such algorithms and Hamiltonian dynamical systems. The cul-
mination of these investigations was the proof that the QR and
Toda algorithms on fulln×n real matrices are each a completely
integrable Hamiltonian system.

Among Deift’s contributions is a systematic development (in
collaboration with Xin Zhou) of the asymptotic analysis of the
Riemann–Hilbert problems in the early 1990s. This powerful
method has yielded strong precise asymptotic results of inte-
grable systems. Even more remarkably, Deift and his numer-
ous collaborators pushed the influence of their newly developed
tools far outside their original domain of classical analysis. Even
though the Riemann–Hilbert approach is rather difficult anddeep,
Percy and his collaborators have very rapidly made it relevant and
even indispensable to a very broad set of mathematical questions.
Percy has preached by example and has himself successively ap-
plied this Deift–Zhou method, as it is now known, to a wide range
of problems with the help of his students and collaborators.

The most widely acclaimed success has probably been the solu-
tion of the long standing conjecture by Ulam about the longest
increasing subsequence of a random permutation (obtained with
Jinho Baik and Kurt Johansson in 1999). This has established
a bridge between the Tracy–Widom fluctuations for the largest
eigenvalue of random matrices and a large class of combinato-
rial problems and limit theorems for particle systems that fall in
the Kardar–Parisi–Zhang universality class of statistical mechan-
ics. This universality class is wide and contains many important
growth processes and interface fluctuations in statisticalphysics.

The domain of relevance of the Riemann–Hilbert techniques
developed by Percy and his collaborators now intersects many
more important domains of mathematics: integrable PDEs (the
long-time behavior of the Korteweg–de Vries equation and non-
linear Schrödinger equations), perturbation theory of nonlinear
Schrödinger equations, integrable ODEs (Painlevé equations),
random matrix theory (universality of the eigenvalue statistics of
the unitary and orthogonal invariant ensembles), combinatorics
(as mentioned above: the limiting distribution of the length of the
longest increasing subsequence of a random permutation) and,
naturally, orthogonal polynomials (asymptotic behavior of gen-
eral orthogonal polynomials).

Percy Deift’s numerous honors include the George Pólya Prize
of SIAM (1998), Guggenheim Fellowship (1999), an invited ad-
dress at the ICM (Berlin, 1998), a plenary lecture at the ICM
(Madrid, 2006), a plenary lecture at the ICMP (Rio de Janeiro,
2006), and the Gibbs Lecture (2009). Percy has been a member
of the US National Academy of Sciences since 2009, and a fellow
of the American Academy of Arts and Sciences since 2003.
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Notes from the Director
(continued from page 1)

the mathematics community. They learned how MSRI has
worked to increase diversity (including participation from
underrepresented groups and women) among participants
and members, that the scientific programming at MSRI
is consistently of the highest degree, that it hosts leading
mathematicians from around the world to meet and col-
laborate at the Institute (in numbers that nearly overwhelm
the physical capacity of the building), and of the mentoring
program between senior mathematicians and postdocs that
enriches their work and careers.

We felt that the Site Visit went very well and that the Site Visit
Team had been presented a thorough account of the Institute’s ac-
tivities and the effectiveness of our programs. In late December
2009, the team sent us their report, along with a request for fur-
ther information regarding a few issues, which we were happyto
provide.

In mid-March of this year, the Institute Management Team of the
DMS at the NSF let us know that our proposal was being recom-
mended to Congress for renewal of another five-year period ata
funding level significantly greater than the Institute has received in
the past. Knowing the exact level of anticipated NSF fundingfor
the next five years allowed us to submit a more fine-tuned budget,
and this revision was approved by the NSF in late August.

I want to acknowledge and thank my staff, especially Hélène
Barcelo, and our Board of Trustees for their many contributions
and hard work to make our proposal successful.

The strength of MSRI and its success in serving the mathemat-
ics community rests on the generous help that we receive fromits
leaders. We are enormously grateful for their donation of time and
expertise and are always pleased when their contributions are rec-
ognized by others.

Thus, it’s a pleasure to congratulate George Papanicolaou,who
serves on our Scientific Advisory Committee, on his having been
awarded this past June the first William Bentner Prize in Applied
Mathematics, with its impressive diploma (above). The citation for
this prize mentioned his “outstanding contributions in mathemat-
ics linking theory to applied problems in various areas including
imaging analysis.”

Ricardo Cortez (top right), cochair of our Human Resources Ad-
visory Committee, received the 2010 SACNAS Distinguished Un-
dergraduate Institution Mentor Award this August. He was cited
for his work with minority undergraduates, including his leadership
in helping found MSRI-UP, our summer undergraduate program,
which has been going strong and getting stronger since 2007.

It’s also a pleasure to congratulate Jean Bourgain, of the Institute
for Advanced Study, who is visiting MSRI regularly this yearas
a member of our Complementary Program, on his being awarded
the Shaw Prize in the Mathematical Sciences this September for
his groundbreaking work in mathematical analysis.

Finally, if you have not yet done so, please come visit our newweb
site, launched in October. We are excited about the new capabili-
ties of the web site to foster new modes of communication between
MSRI, its members, mathematicians, and the general public.

New Staff Members
MSRI is excited to have two new staff members in key positions:
Jennifer Sacramento is now our Program Coordinator, and Phyllis
Carter (far right) is our Chief Financial and Administrative Officer.

Phyllis is responsible for coordination and management of financial,
human resources and administrative operations at MSRI. Shebrings
to MSRI over 25 years of experience as a senior level manager at both
for-profit and nonprofit organizations. Most recently, she was CFO of
Playworks, Inc., a national nonprofit focused on youth education and
health. At Playworks, she led the Finance and IT department through
a national expansion from 5 to 11 cities across the US. Phyllis has an
MBA from Washington University Olin School of Business in Saint

Marsha Borg

Louis and lives in Oakland. She loves travel, volunteering in youth education and hiking Bay Area peaks.

Jennifer comes to us from The Gubbio Project, a homeless day-shelter in San Francisco, where she served as Executive Director and
Board member. Jennifer has been putting her experience to excellent use in providing hospitality and support to all the visitors of
MSRI and the Greater Bay Area.
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Inverse Problems and Applications
Liliana Borcea, Maarten de Hoop, Peter Kuchment and GuntherUhlmann

In inverse problems one probes a medium, or an obstacle, with
a particular type of field and measures the response. From these
measurements one aims to determine the medium properties and/or
geometrical structure. Typically, the physical phenomenon is mod-
eled by partial differential equations and the medium properties
by variable, and possibly singular, coefficients. The interaction of
fields is usually restricted to a bounded domain with boundary: a
part of the human body, the solid earth, the atmosphere, an air-
plane, etc. Experiments can be carried out on the boundary, and
the goal is thus to infer information on the coefficients in the do-
main’s interior from the associated boundary measurements. The
key questions addressed in inverse problems concern the unique
identifiability of the coefficients, the stability, and explicit recon-
struction, under assumptions of complete or partial boundary data.

The mathematical techniques needed to study inverse problems are
diverse, and include those from the analysis of partial differential
equations, microlocal analysis, abstract and applied harmonic anal-
ysis, complex analysis, integral geometry, differential geometry, al-
gebraic geometry, control theory, optimization, stochastic analysis,
and discrete mathematics.

Calderón’s problem

Calderón’s inverse problem, which forms the mathematical foun-
dation of electrical impedance tomography (EIT), is a fundamental
example of an inverse problem. In it, one wishes to determine(if
possible) an unknown conductivity distribution inside a bounded
domain modeling — for example the earth, a human thorax, or a
manufactured part — based from voltage and (static) currentmea-
surements made on the boundary. The initial motivation to propose
this problem came from geophysical prospecting. In the 1940s, be-
fore his distinguished career as a mathematician, Calderónwas an
engineer working for the Argentinian state oil company, Yacimien-
tos Petrolíferos Fiscales. Apparently, at that time Calderón had
already formulated the problem that now bears his name, but did
not publicize his work until 30 years later.

In medical imaging applications, EIT strives to recover internal
conductivity of tissues by boundary measurements. For example,
in the model experiment shown in the figure above, the conductiv-
ity data can be processed to give the approximate reconstruction on
the right (courtesy J. Kaipio, Finnish Center of Excellencein In-
verse Problems). One widely studied potential applicationof EIT

is the early diagnosis of breast cancer.

EIT is an example of a very diffuse inverse problem. The currents
go instantaneously everywhere in the medium (as opposed, for ex-
ample, to X rays where electromagnetic energy propagates along
straight lines). Conductivities can be anisotropic, that is, depend
not only on position but also on direction. An example is muscle
tissue in the human body.

Calderón’s problem has been extensively studied in the last30
years, and there have been intricate solutions to many of itsap-
pearances, concerning the regularity of the conductivity and the
extent of the data. Still, there remain fundamental questions unre-
solved, such as the uniqueness modulo change of variables for the
anisotropic conductivity case, and partial boundary data,in dimen-
sion three.

Cloaking

Electrostatics. In studying Calderón’s problem, conductivities
were found that cannot be distinguished from a constant conduc-
tivity by making electrostatics measurements at the boundary of
a given domain. The idea is to use the fact that the equation de-
scribing the potential in the case of electrostatics is invariant un-
der changes of coordinates. In dimension three, conductivities
can be identified as Riemannian metrics, and one can formulate
Calderón’s problem as determining the Riemannian metric ofa
manifold with boundary by measuring the Dirichlet-to-Neumann
map at the boundary of the manifold. Indeed, the problem, be-
ing of geometric nature, is invariant under changes of coordinates
or transformations that leave the boundary fixed, which opens the
way to develop an approach to make objects invisible.

The preceding drawing shows a surface (representing a manifold in
the higher-dimensional case) where the “neck” is pinched. In the
limit, the manifold has a pocket about which the boundary mea-
surements do not give any information. If the collapsing of the
manifold is done in an appropriate way, in the limit, we obtain a
(singular) Riemannian manifold which is indistinguishable from a
flat surface. This can be considered as a conductivity, singular at
the pinched points, that appears to all boundary measurements the
same as a constant conductivity.

Invisibility Invisibility has been a subject of human fascination
for millennia, from the Greek legend of Perseus versus Medusa
to the more recentThe Invisible Manand Harry Potter. Since
2005 there has been a wave of serious theoretical proposals in the
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physics literature for cloaking devices – structures that would not
only render an object invisible (light rays) but also undetectable
to finite-frequency electromagnetic waves. A proposal thathas re-
ceived particular attention, because in principle it can cloak any
object of any shape and size, is that of Pendry and coworkers.1

It has been referred to in the physics literature astransformation
optics. Essentially the same idea was formulated earlier in electro-
statics terms: a singular transformation2 is used to blow up a point
to a sphere, forming the boundary of the cloaked region. Push-
ing forward a constant conductivity using this transformation gives
an anisotropic conductivity, whose currents have the behavior il-
lustrated in the next figure. No current flows in the (inner) ball
of radius 1, making this region effectively invisible to boundary
measurements. All the electrostatics measurements made onthe
boundary of the ball of radius 2 are the same as the case of homo-
geneous conductivity.

Other constructions using transformations have been proposed; we
mentionelectromagnetic wormholes. The idea is to trick electro-
magnetic waves to think they are going through a handle. Using an
electromagnetic wormhole one can create a secret connection be-
tween two points in space. One knows the “input” and can encode
the “output”. The wormhole itself is invisible.

The blueprint of electromagnetic parameters used for cloaking
have not been found in nature. Indeed, there is a very active area
of research inmetamaterialsto construct cloaking devices. In a
widely reported experiment3 this has been accomplished at micro-
wave frequencies. As stated inScience, the theoretical ideas for
cloaking based on mathematical transformations have produced
and will produce a long shadow.

Medical imaging

Many techniques of medical imaging exist today, and many have
motivated extensive mathematical analyses. In medical imaging,
one naturally exploits different modalities to resolve a range of
physiological parameters. However, they also differ in their sen-
sitivity, resolution and safety.

The oldest medical imaging application is the now standardX-ray
computed tomography(usually called CT-scan). The goal here is
to reconstruct tissue density in the interior of a domain from ob-
servations of the degree of attenuation of thin beams of X rays,
passing through the domain. Mathematically, here one strives to
recover a function of two or three variables from its integrals over
“all” straight lines, which is called the Radon transform. It was
in the 1950s and 1960s that the first X-ray CT scanners for med-
ical imaging were developed, for which eventually A. Cormack
and G. Hounsfield received in 1979 the Nobel prize in medicine.
Even though the CT scan is by now a well established technique,
the more recent technological developments yielding trulythree-
dimensional probing (that is, beyond the slice-by-slice procedure)
poses new mathematical challenges concerning the reconstruction
of density.

In emission tomography, one aims to detect the internal distribu-
tion of radiation sources in a nontransparent body. The patient is
injected with a small dose of radioactive substance and thenits dis-
tribution is monitored by a scanner. The inverse problem here also
leads to the inversion of a Radon type transform, but now witha
rather complicated functional weight in the integrand. Though the
basic questions — uniqueness of reconstruction from such data and
inversion — have been resolved recently, some important mathe-
matical issues concerning this modality remain open.

We mention a few very recent techniques in medical imaging, some
of which are still subjects of thorough mathematical and engineer-
ing investigations. Inultrasound vibro-acoustographyone focuses
two beams of ultrasound at two slightly different high frequencies
on the region of interest. The two fields interact nonlinearly there,
to create a force at the (low) difference frequency, detectable on
the boundary. The inverse problem is related to the force. Inhybrid
methods, one aims to combine phenomena of different physical na-
tures (for example, electromagnetism and ultrasound) to overcome
their individual deficiencies and combine their advantages, so long
as they are coupled. Examples includethermo/photo-acoustic to-
mography, where one heats up the tissue with a brief electromag-
netic pulse and uses ultrasound transducers to “listen” to the result-
ing acoustic wave. (The figure shows the photo-acoustic image of
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1J. B. Pendry, D. Schurig and D. R. Smith, “Controlling electromagnetic fields”,Science312 (June 23, 2006), 1780–1782. A related idea is given in U. Leonhardt,
“Optical conformal mapping”,Science312(23 June, 2006), 1777–1780.

2A. Greenleaf, M. Lassas and G. Uhlmann, “On nonuniqueness for Calderón’s inverse problem”,Math. Res. Lett.10:5–6 (2003), 685–693.
3 D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies”,Science314(2006),

977–980.
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a melanoma.) The idea is to exploit the high contrast from elec-
tromagnetic absorption and high resolution from the ultrasound.
Many mathematical issues here are unresolved. Topics of cur-
rent interest, each of which involves demanding mathematics, in-
clude fully 3D X-ray CT, elastography, fluorescent tomography,
electron microscope tomography, magnetic resonance elastogra-
phy, and various hybrid methods.

Geophysical inverse problems

Inverse problems in geophysics aim to image and constrain source
locations and mechanisms, and material properties and the geology
and sedimentary processes in the earth’s crust, as well as the geo-
chemistry, mineral physics, and geodynamics on a planetaryscale.
Though there are various important new results pertaining to po-
tential fields, such as in gravity gradiometry and geomagnetics, we
focus here on the category of waves (seismic, ground-penetrating
radar) and diffuse (electromagnetic) waves. Also, in geophysics,
hybrid modalities have been considered and studied, in particular,
the electroseismic effect. Here, we discuss various aspects pertain-
ing to solid earth geophysics, including applications in hydrocar-
bon exploration and production. We just mention the many de-
velopments which have taken place, for example, in hydrologic
inversion concerning contamination problems such as determining
a pollution source, and remote sensing from space.

A full description of seismic waves is given by a system of elastic-
gravitational equations including the effects of the rotation of the
earth. On short time scales these are typically approximated by a
system of (anisotropic) linear partial differential equations describ-
ing elastic waves. Through arguments of polarization decoupling,
in many applications, these equations are further approximated by
scalar or acoustic wave equations. The coefficients of thesepartial
differential equations naturally vary on a wide range of scales, and
in particular regions may contain fluctuations described byvari-
ous random processes; they capture the material properties, mi-
crostructure, and the above mentioned processes. Seismic waves
can be excited by various natural (earthquakes, microseismicity,
tremor, ambient noise) and controlled (marine, land) sources. The
wave field is observed in large (dense) arrays of sensors (such as
USArray) at the earth’s surface (or streamer and ocean bottom ca-
bles in the marine setting). The locations of sources and receivers
form the acquisition geometry and control the illuminationof the
subsurface. From these measurements one can in principle extract
or recover spectral data (normal modes), transient phases,and dis-
tinguish dispersive surface waves (upon describing the subsurface
locally by a bent slab in a half space). In certain cases, one can
construct the Neumann-to-Dirichlet map on an open set from the
measurements in the given acquisition geometry. In any case, the
mappings from the mentioned coefficients to the data is nonlinear
and the study of their properties is one of the main subjects in in-
verse problems. The linearized problems lead to the introduction
of imaging operators and are often studied via normal operators.

In many seismic applications, observations typically haveto be
mapped to data such as travel times, finite-frequency traveltimes,
wave form polarized phases, the Neumann-to-Dirichlet map,etc.
Examples of images and reconstructions are given in the sidebar.
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Left – top: a horizontal section of a reconstruction using singly
scattered compressional waves showing salt tectonics in the
North Sea; bottom: a horizontal section of a reconstructionof
phase transitions in Earth’s transition zone near Hawaii using
SSprecursors (earthquake data); the depths of these are used
to infer the presence and location of plumes. Middle – top:
a horizontal section of a reconstruction (showing sedimentary
layers) using singly scattered elastic waves (qPqPandqPqSV
reflections) in anisotropic models in the North Sea; middle:a
wave packet, used, for example, in data compression and reg-
ularization and partial reconstruction; bottom: combinedsensi-
tivities using a single (finite-frequency) data sample in reflec-
tion tomography and inverse scattering, in the presence of caus-
tics. Right – top, middle: horizontal and vertical sectionsof a
reconstruction based on the geodesic X-ray transform usingP
waves and USArray data; bottom: a section of an image show-
ing the subducting Cocos plate, the D′′ layer, post-perovskite
phase transition and the core-mantle boundary.

Surface-waves tomography. In surface-wave tomography, one
localizes the upper structure of the earth and views it as a (curved)
slab or half space. The typical strategy follows a high-frequency,
semiclassical analysis in which the medium variations in the direc-
tion normal to the surface of the slab are rapid as compared tothe
variations in the transverse directions. In this case, the problem can
be described in terms of propagation along the slab’s surface tied
to locally one-dimensional spectral problems reflecting the mate-
rial properties underneath any point on the surface. In the inverse
problem, propagation over the surface yields pointwise frequency-
dependent phase velocities which are then studied, and intercon-
nected, in the mentioned spectral problems.

Travel omography: body-wave phases. The classical inverse
problem in seismology is travel tomography. The first inverse
formulation and reconstruction is due to Herglotz and Wiechert.
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Here, travel times are viewed as the boundary distance function of
a Riemannian manifold (the earth) with boundary. The material
properties are assumed to vary smoothly. Thus the polarizations
of elastic waves can be decoupled. Uniqueness results were ini-
tially established for the isotropic case and simple metrics, that is,
in the absence of caustics. In the anisotropic case, one obtains
uniqueness of reconstruction up to a change of variables that is the
identity near the boundary. In dimension two the anisotropic case
for simple metrics has been fully analyzed through a connection to
Calderón’s problem. In dimension three, also, the case of simple
metrics has been understood. Local uniqueness has been estab-
lished in the presence of caustics using the scattering relation as
the data.

In global seismic applications, one typically considers lineariza-
tion, that is, the geodesic X-ray transform. The known injectivity
results for this transform are very similar to those for the nonlin-
earized case. The lack of injectivity in the presence of caustics
(focusing and defocusing) underlies the unconstrainedness of ther-
mochemical convection in the Earth’s mantle (think plumes). The
normal operator associated with the restricted X-ray transform be-
longs to anIp;l class metric with constant curvature.

Progress in admitting the formation of caustics has been based on
incorporating additional information from the observations. In the
presence of caustics, more recent results have been obtained us-
ing the scattering relation as the data. The scattering relation con-
tains the slope information (direction of the ray hitting the sur-
face) which is revealed in seismology by so-called vespagrams and
beamforming.

Avoiding the difficulty (and perhaps impossibility) of picking
travel times in finite-frequency observations, in seismology, one
has replaced the differential time data in the geodesic X-ray trans-
form by cross correlations of the trace of the solution in therefer-
ence model with the observations. The data become the locations
of the maxima of the cross correlations nearest to the origin. The
approach has been coined wave-equation tomography. Thus the
formulation is based on partial differential equations. Weare just
beginning to understand the map that represents the analogue of the
geodesic X-ray transform. Wave-equation tomography opensthe
possibility of considering coefficients of reduced regularity. How-
ever, the question of injectivity remains open.

One of the focus areas in seismic tomography has been the un-
ravelling of anisotropy, to analyze deformation and subduction
processes, for example through lattice-preferred orientation, con-
strained by GPS measurements. The strategy is based on shear-
wave splitting, and one has used differential travel times and split-
ting intensities as the data. Many questions remain open about
ways to uniquely determine the local orientations of symmetry axes
of the stiffness tensor in the subsurface.

Separable inverse problem: single-scattered phases.Imaging
discontinuities using singly scattered phases in the data has a long
history and dates back to the work of Hagedoorn. The point of de-
parture is a separable inverse problem in which the modelingof the
data is linearized about a reference. (There are no proper estimates
for this linearization.) The idea is that the reference is smooth and
varies on a coarse scale, whereas the perturbation, or contrast, cap-

tures the singularities and varies on the finest scales.

The inverse problem of determining the reference / background is
essentially “reflection” tomography or “velocity” inversion which
is strongly nonlinear; however, it is commonly dealt with using lo-
cal optimization strategies (no proofs of convergence). The inverse
problem of determining the contrast is inverse scattering and, natu-
rally, ignores multiple scattering. Roughly speaking, there are two
directions to realize reconstructions: The reverse-time approach,
and the reverse-depth (or downward continuation) approach(which
can be formulated in curvilinear coordinates leading to thenotion
of pseudodepth).

The linearization is identified as the Born or the Kirchhoff approx-
imation and defines a single scattering operator mapping thecon-
trast to the data on the boundary. The Kirchhoff approximation
distinguishes itself by honoring the boundary conditions across
surfaces of discontinuity. The calculus of Fourier integral oper-
ators has provided a deep insight in the inverse scattering prob-
lems. Indeed, under weak conditions the single scattering operator
is a Fourier integral operator. The challenges of imaging appear
through the so-called acquisition geometry limiting wheresources
and receivers can be placed. A maximal geometry has dimension
2n - 1. A codimension-2 situation occurs in the common source
acquisition typical for earthquake data, while the codimension-1
situation is typical for marine streamer acquisition. The normal
operator in all these cases is pseudodifferential, that is,does not
generate artifacts, if the canonical relation of the singlescattering
operator satisfies the Bolker condition. However, in the presence of
caustics, this condition can be violated. In particular cases, the nor-
mal operator belongs to anIp;l class and the generation of artifacts
can be characterized.

The key test whether the reference is estimated sufficientlywell
is the “range test” for the single scattering (or modeling) operator
(the adjoint of the inverse scattering operator): To check whether
the (presumably singly scattered) data are in the range of the single
scattering operator, one can derive an annihilator (which depends
on the reference model). With sufficiently many scatterers,one can
prove uniqueness of the reflection tomography problem. However,
it is all based on single scattering theory and separation ofscales.

It is common practice to carry out elastic-wave polarization de-
coupling. Naturally information is contained in the polarization
coupling. Mode conversions have been exploited in the imaging
of discontinuities without knowing the source. The idea is to use
P to S conversions and image their cross correlations in the data.
Seismologists refer to this approach as receiver functions.

Annihilators are also closely related to elliptic minimal projectors
(onto the range of the mentioned single scattering operators) which
can be exploited, under certain conditions, to fill in missing data or
generate a desirable acquisition geometry. Partial reconstruction
(accounting for partial illumination) is naturally formulated by rep-
resenting the mentioned single scattering and normal operators as
matrices using a tight frame of curvelets. Here one exploitssparsity
of these matrices, and the observation that the data and geological
images can be compressed using curvelets.
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Full-wave methods. With the state of supercomputing, recon-
struction techniques using the full waveform data, in dimension3,
have become feasible and hence have received significant attention.
Here, for example, computational linear algebra has playedan im-
portant role. Most developments have been focused on obtaining
local results and approaches which assume reconstruction close to
the actual model, using various techniques from optimization and
regularization. One class of results pertain to the multifrequency
formulation using the Helmholtz equation. Local convergence of
iterative methods is being studied, which is closely connected to
the stability analysis of the inverse problem. The availability of
low-frequency data and dual-sensor data (detecting the boundary
normal derivatives of the wave field) appear to be important in this
context. Moreover, various approaches are being explored to gen-
erate representations of the Neumann-to-Dirichlet map from the
observations on parts of the boundary.

The inverse problem of the single-frequency Helmholtz (or
Schrödinger) equation using the Dirichlet-to-Neumann mapas the
data has been extensively studied, with different conditions on the
regularity of the reciprocal wave speed or potential. With full
boundary data, uniqueness was established for bounded and mea-
surable potentials. (There is a natural connection to Calderon’s
problem through a mapping of conductivity to a potential.) The
proofs of this and many other results make use of the construc-
tion of Complex Geometrical Optics solutions. The key problem
of partial boundary data with, essentially, sources and receivers on
a common open set remains open.

In the case of the scalar-wave equation, uniqueness has beenestab-
lished using methods of time-domain boundary control and unique
continuation. However, the corresponding problem for systems,
for example, describing elastic waves, remains open.

Controlled source electromagnetic method. As an example of
diffuse waves, we mention the inverse problem derived from the
low-frequency Maxwell equations. In the magnetotelluric method,
naturally occurring electric and magnetic fields are used, while in
the controlled-source electromagnetic (CSEM) method one gener-
ates fields with point electric and magnetic dipoles on the boundary
of the manifold representing the subsurface. Marine electromag-
netic methods are, for example, used to characterize magmatic and
hydrothermal systems in fast spreading mid-ocean ridges. In ex-
ploration, CSEM is used for direct hydrocarbon detection. One
can cast this problem in the form of a Schrödinger equation with
matrix potential. The data are represented through an impedance
map. Uniqueness was established forC4 conductivities with full-
boundary data, again, using complex geometrical optics solutions.

Random media and noise sources

Noise interferometry. Relatively recent work on time reversal of
waves in a random medium has shown that medium fluctuations are
not necessarily detrimental to, but may in fact enhance various op-
erations with waves. In interferometry, one considers “field-field”
cross correlations associated with (ambient) noise observed at pair-
wise distinct receivers, to obtain an “empirical” Green’s function,
which process is naturally related to time reversal. Indeed, results

have been obtained rigorously, where the cross correlationyields
the Green’s function up to an integral operator the kernel ofwhich
is described by an Ito–Liouville equation, which admits, under cer-
tain conditions, statistically stable solutions. Indeed,better esti-
mates (when the Green’s function is better resolved) may be ob-
tained in a randomly inhomogeneous medium than in a determin-
istic homogeneous medium, as a consequence of the wider angular
spread in the phase-space representation of a wave in the random
medium. The enhanced resolution occurs due to an exponential
damping factor that appears in the analysis of the cross correlation,
and that involves the structure function of the medium. The cross-
correlation technique has been successfully applied perhaps most
notably to the Apollo 17 Lunar Seismic Profiling Experiment.The
correlations were used in an inverse problem estimating thether-
mal diffusivity in the shallow lunar crust, while heating from the
Sun is the ultimate cause of the seismic noise.

Effectively using receivers as sources through the mentioned
“field-field” cross correlations, one can generate, in principle, a
rich set of data or even a Neumann-to-Dirichlet map on part of
the surface (boundary of a manifold describing the subsurface),
even where deterministic sources are necessarily absent. While
current studies relating to the heterogeneous earth mostlymake
use of surface-wave contributions to the Green’s function estimate,
the importance of understanding the behavior of (scattered) body
waves has been recognized.

Imaging and clutter. The goal of sensor array imaging is to cre-
ate maps of the structure of inaccessible media using sensors that
emit probing pulses and record the scattered waves, the echoes. We
call the recorded echoes array data time traces, to emphasize that
they are functions of time. Because the array has finite size and
the data is band limited, we cannot determine in detail the medium
structure, and the inverse problem must be formulated carefully to
be solvable. In general, we distinguish between determining singu-
larities in the wave speed, which arise at boundaries of reflectors,
and the background speed. The latter determines the kinematics of
the data, the travel times of the waves, and the former is responsi-
ble for the dynamics of the data, the reflections. Array imaging is
typically concerned with locating the reflectors in the medium, but
in order to be carried out it requires knowledge of the background
wave speed, or its determination by other methods.

Left: Setup for imaging a crack in a random medium. The

color bar indicates the fluctuations of the wave speed in km/s.

Right: Time traces of the echoes received at the array in

the random medium (top) and in the homogeneous medium

(bottom). The abscissa is time in ms and the ordinate is the re-

ceiver location in the array, in units of the central wavelength.

9



Focus on the Scientist: Liliana Borcea

George Papanicolaou
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Liliana Borcea started her research in inverse problems with
her Stanford thesis on high-contrast impedance tomography.
Around 2000, she moved to array imaging, especially imaging
in random media, but she has been very active in impedance to-
mography as well, with her pioneering work on optimal grids
done jointly with her PhD students Fernando Guevara Vasquez
(now at Utah) and Alexander Mamonov, and with Vladimir
Druskin of Schlumberger Research.

In array imaging she has introduced and developed extensively
coherent interferometric imaging, CINT, (along with George
Papanicolaou and Chrysoula Tsogka), which is an image forma-
tion algorithm that is based on cross correlations of array data,
rather than the data itself as is usually done. CINT is robustin
complex and unstable environments but it must properly assess
and adapt to such environments. It is this aspect of CINT thatis
mathematically most challenging. She has introduce many other
important innovations in array imaging, such as optimal illu-
mination techniques using generalized prolate spheroidalfunc-
tions, the use of the local cosine transform for filtering data
coming from strongly inhomogeneous media, special data fil-
tering algorithms for imaging in layered media, etc. In the last
two years she has also begun an in-depth analysis of autofocus
and motion estimation problems in synthetic aperture radarus-
ing phase-space methods.

Liliana received her PhD from Stanford in 1996, and then was
awarded an NSF postdoctoral fellowship which she held at the
California Institute of Technology. Subsequently she moved to
Rice University where she is currently a Noah Harding profes-
sor. Her (NSF supported) research on imaging in random media
was selected by the NSF as a research highlight used in the NSF
budget request to Congress.

In the setting of the single scattering theory above mentioned, in
many applications, the background medium is cluttered due to the
presence of small inhomogeneities that interact with the waves
probing the scatterers. Clutter poses serious impedimentsto the
imaging process. In recent years, significant progress has been
made in addressing this problem, both from experiments and in
developing a comprehensive mathematical framework, whichhas

led to new resolution theories incorporating concepts suchas sta-
tistical stability. A natural approach to studying waves incluttered
media is to model the unknown inhomogeneities, the clutter,with
random processes. Wave propagation in random media has been
extensively studied in the framework of stochastic partialdifferen-
tial equations. The success of imaging with clutter relies on a de-
tailed understanding of the cumulative, multiple scattering effects
of the inhomogeneities in the medium in order to mitigate them
and produce reliable results that are independent of the realization
of the medium.

Imaging in moderately backscattering media can be carried out
with the coherent interferometric (CINT) method. CINT images
are formed using cross-correlations of the array data traces com-
puted locally in time and over sensor offsets. The thresholding in
time and space in the computation of the cross-correlationsis moti-
vated by the statistical decorrelation of the wave fields at the array,
due to multiple scattering in the medium. The CINT imaging func-
tion is in fact the smoothed Wigner transform of the data traces
evaluated at travel times and directions from the array sensors to
the point at which we form the image. The smoothing is controlled
by the time and sensor thresholding and it is because of it that sta-
tistical stability can be achieved. Stability comes, however, at the
cost of loss of resolution; the resolution can be improved using
delicately designed data filters to image selectively various parts of
the reflectors.

The problem becomes more challenging in the case of strong clut-
ter, where the coherent primary echoes off the reflectors areweak
and overwhelmed by the medium backscatter. Recent work shows
that, under certain conditions it is possible to detect these coherent
echoes and then filter the unwanted clutter backscatter; this is illus-
trated in the figure: The CINT method alone does not deal with the
clutter backscatter and produces the image on the left. However,
CINT with filtered data traces produces improved resolutionin the
figure on the right.

When the multiple scattering by the inhomogeneities is so strong
that no coherence is left in the array data, coherent imagingmeth-
ods cannot be used anymore. That is to say, we cannot form an
image by simply adding the time delayed array data traces or their
cross-correlations. Instead, the strategy is to resort to parameter
estimation problems that are usually based on a transport theory
model to describe how the energy propagates in the strongly scat-
tering medium.

Left: CINT image in heavy clutter. Right: CINT image with the

filtered data. The three reflectors are indicated with white cir-

cles and correctly located.
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Puzzles Column
Elwyn Berlekamp and Joe P. Buhler

1. (a) Prove or disprove: There is a subsetS of nonnegative inte-
gers such that every nonnegative integer can be written uniquely in
the formx+2y for x; y ∈ S.

(b) Same question with both occurrences of “nonnegative” omitted.

Comment:Part (b) is due to Richard Stong, and it appeared in the
1996 American Mathematics Olympiad.

2. VerticesA, B, andC of an equilateral triangle of side 1 in the
plane are given. Denote byAB the line segment fromA to B, by
Â the circular arc with centerA and endpointsB andC, and byB̂

the circular arc with centerB and endpointsA andC. What is the
radius of the circle that is tangent to the line segment and the two
circular arcs?

Comment: The Guardian, a British newspaper, has amusing puz-
zles each week; this one appeared in the October 16 edition.
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3. Alice, Bob, Charlie, and Diane play tennis in sets: two of them
play a set and the winner stays on the court for the next set, with
the loser replaced by the player who was idle the longest. At the
end of the day Alice played 61 sets, Bob played 22 sets, Charlie
played 21 sets, and Diane played 20 sets.

Who played in the 33rd set?

Comment:This is a variant, due to Stan Wagon, of a puzzle in Dick
Hess’sAll-Star Mathlete Puzzles.

4. (a) Find two infinite power seriesf(x) andg(x), whose coeffi-
cients are only0 or 1, whose product is1=(1-x).

(b) Describe all such pairs.

Comment:Veit Elser poses this problem, and notes that Leo Moser
and N. G. de Bruijn asked similar questions earlier.

5. A team ofn people play a game described below. They are al-
lowed to have a strategy session the night before, during which the
game is completely described, and they can all plan their joint strat-
egy. You might imagine that they all wear name-tags, and might
choose to agree on a fixed ordering, e.g., alphabetical. After the
strategy session, no further communication of any kind is allowed
between the players.

The game takes place the next day. An umpire places (distinct) real
numbers on each of their foreheads. Each player sees all of the real
numbers except his or her own. Each player has an ambidextrous
white mitten and an ambidextrous black mitten, and must place one
mitten on each hand (doing so out of sight of the other players). At
that point the players are lined up with the forehead numbersin
numerical order. Adjacent players join hands. The team winsif
and only if each pair of touching mittens is of the same color.

Devise a strategy that guarantees that the team will win!

Comment:Rumor has it that this puzzle circulated at Google re-
cently.

Call for Proposals

All proposals can be submitted to the Director or Deputy Director or any member of theScientific Advisory Committeewith a copy
to proposals@msri.org. For detailed information, please see the websitewww.msri.org.

Thematic Programs

Letters of intent and proposals for semester or year long programs at the Mathematical Sciences Research Institute (MSRI) are
considered in the fall and winter each year, and should be submitted preferably byOctober 1 or December 30. Organizers are
advised that a lead time of several years is required, and areencouraged to submit a letter of intent prior to preparing a pre-proposal.
For complete details seehttp://tinyurl.com/msri-progprop.

Proposals for Hot Topics workshops

Each year MSRI runs a week-long workshop on some area of intense mathematical activity chosen the previous fall. Proposals for
such workshops should be submitted byOctober 31or December 30. Seehttp://tinyurl.com/msri-htw.

Summer Graduate Schools

Every summer MSRI organizes four 2-week long summer graduate workshops, most of which are held at MSRI. To be considered for
the summer of yearn, proposals should be submitted byOctober 31or December 30of yearn-2. Seehttp://tinyurl.com/msri-sgw.

11

http://tinyurl.com/msri-sac
mailto:proposals@msri.org
http://www.msri.org
http://tinyurl.com/msri-progprop
http://tinyurl.com/msri-htw
http://tinyurl.com/msri-sgw


MSRI
Mathematical Sciences Research Institute

17 Gauss Way, Berkeley CA 94720-5070
510.642.0143• FAX 510.642.8609• www.msri.org

ADDRESS SERVICE REQUESTED

Non-Profit
Organization
US Postage

PAID
BERKELEY, CA
Permit No. 459

MSRI Staff Roster

Phone area code 510. Add@msri.orgto email addresses.

Scientific Staff

Robert Bryant, Director, 643-6142,director
Hélène Barcelo, Deputy Director, 643-6040,hbarcelo
David Auckly, Associate Director, 643-4745,auckly
Robert Osserman, Special Projects Director, 643-6019,osserman

Administrative Staff

Jackie Blue, Housing/International Scholar Advisor, 643-6468,jblue
Marsha Borg, Facilities and Administrative Coordinator, 642-0143,marsha
Phyllis Carter, Chief Financial and Administrative Officer, 643-8321,pcarter
Kelly Chi, Webmaster, 643-0906,kellyc
Nathaniel Evans, Accounting Manager, 642-9238,nate
Jennifer Fong, Senior Systems Administrator, 643-6070,ferfong
Arne Jensen, Senior Network Engineer, 643-6049,arne
Konia Johnson, Desktop Systems Administrator,konia
Vanessa Kääb-Sanyal, Workshop Coordinator, 643-6467,vanessa
Silvio Levy, Editor, 524-5188,levy
Rizalyn Mayodong, Accounts Payable/Member Relations, 642-9798,rizalyn
Hope Ning, Executive Assistant to the Director, 642-8226,hyunjin
Megan Nguyen, Program Analyst, 643-6855,megan
Larry Patague, Director of Information Technology, 643-6069, larryp
Anne Brooks Pfister, Press Relations Officer/Board Liaison,642-0448,annepf
Linda Riewe, Librarian, 643-1716,linda
Jennifer Sacramento, Executive Assistant and Programs Coordinator, 642-0555,jsacramento
James T. Sotiros, Director of Development, 643-6056,jsotiros
Nancy Stryble, Director of Corporate Relations, 642-0771,nancys
Brandy Wiegers, Assistant Program Manager, 643-6019,brandy
Joshua Zucker, Assistant Program Manager,joshua.zucker@gmail.com

Come to the Institutes’

Open House
at the January 2011

Joint Mathematics

Meetings

in New Orleans!

Thursday

January 6, 2011

5:30-8:00 pm

New Orleans Marriott

Mardi Gras rooms E–H

Third Floor


