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Abstract

Results are reported of a numerical implementation of the hyperbolic Fourier
transform and the geodesic and horocyclic Radon transforms on the hyperbolic
plane, and of their inverses. The study is motivated by the hyperbolic geome-
try approach to the linearized inverse conductivity problem, suggested by C. A.
Berenstein and E. Casadio Tarabusi.

1 Introduction

This paper was motivated by an approach to the inverse conductivity problem, which
can be formulated as follows. Let U ⊂ Rn be a domain with boundary Γ. An unknown
function σ (the conductivity) must be recovered from the following data. Given a function
ψ on Γ (the current), one solves the Neumann boundary value problem{

∇ · (σ∇u) = 0 in U
σ ∂u

∂ν

∣∣
Γ

= ψ,

where ν is the unit outer normal vector on Γ. Then one measures the boundary value
φ = u|Γ (the potential). All pairs (ψ, φ) are assumed to be accessible. In other words, the
so-called Dirichlet-to-Neumann operator Λσ : φ→ ψ is known. One needs to recover the
conductivity σ from this data. The problem, which amounts to inverting the mapping
σ → Λσ, is obviously nonlinear.

The practical version of this problem is the so-called Electrical Impedance Tomography,
or Electrical Impedance Imaging. It has many important applications in medical diag-
nostics, engineering, and other areas. One can find detailed discussion of the inverse
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conductivity problem and of the impedance tomography in [1]-[3], [14], [18]-[20], [22],
and [26]-[32].

The inverse conductivity problem is very challenging analytically and numerically. There
are several important problems to resolve: uniqueness of determination of the conduc-
tivity, stability of the reconstruction, and good inversion algorithms. While the problem
of uniqueness can be considered as essentially solved (see [24], [31], [32], and references
therein), the other problems are still far from a complete resolution. The problem is
highly unstable, so there is probably no hope to achieve the quality of reconstruction
known to other common tomographic techniques.

The first practical algorithm of D. Barber and B. Brown deals with the linearized problem
(which is still very unstable). A thorough investigation of this algorithm was started by
F. Santosa and M. Vogelius in [28]. The study done in [28] was extended by C. Berenstein
and E. Casadio Tarabusi [8], [9] to an understanding that the linearized two-dimensional
problem can be treated by means of hyperbolic integral geometry. Let us briefly explain
how hyperbolic geometry can arise here. Consider the two-dimensional case when the
domain U is the unit disc D in C. It is well known (see [4] and [15]) that the unit disc
serves as a model of the hyperbolic plane H2. We will pinpoint now the indications that
hyperbolic geometry might play some role in the inverse conductivity problem (at least in
its linearized formulation). First of all, the Laplace operator that arises in the linearized
problem (see below) is invariant with respect to the group of Möbius transformations.
Another indication is that if one creates a dipole current through a point on the boundary
of D, then the equipotential lines and the current lines form families of geodesics and
horocycles in H2. Following the analysis done in [28] of the algorithm suggested in [1],
[2], C. Berenstein and E. Casadio Tarabusi discovered that in fact for n = 2 the linearized
inverse conductivity problem can be reduced to the following integral geometry problem
on H2: the measured data enables one to find the function

RG(A ∗ σ),

where RG is the geodesic Radon transform on H2, A is an explicitly described radial func-
tion on H2, and the star ∗ denotes the (non-Euclidean) convolution on H2. Now known
tools of harmonic analysis on H2 (including inversion of the geodesic Radon transform, an
analog of Fourier transform, and convolution operators) enable one to recover σ. One can
find descriptions and properties of these transforms in [15]. A generalization of this ap-
proach to dimensions greater than two was obtained in [13], where it was shown that the
higher dimensional case requires a combination of methods of Euclidean and hyperbolic
integral geometries.

If one wants to use this approach to the inverse conductivity problem numerically, the
problem arises of numerical implementation of harmonic analysis on the hyperbolic plane.
Namely, one needs to be able to compute the following transforms and their inverses:
Fourier transform, geodesic Radon transform, and horocyclic Radon transform on the
hyperbolic plane. Implementation of these transforms was the goal of the work, the
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results of which are described in this paper. Most of the work was done during sessions
of a tomography seminar at WSU, which explains the large number of authors involved.
This report was presented during the 1st ISAAC Congress in Delaware in 1977, but by
a mistake was omitted from its Proceedings.

2 A review of harmonic analysis on the hyperbolic

plane

Details of harmonic analysis on H2 and of its application to the inverse conductivity
problem can be found in [15]-[17], [5]-[9], [13], and [23]. We will only briefly remind the
reader some basics of analysis on H2 (see [15]).

The unit disk D in C with the metric

ds2 =
|dz|2

(1− |z|2)2

is a model of H2 (the Poincare model). The group of Möbius transformations consists
of the isometries

z → az + b

bz + a
, |a|2 − |b|2 = 1.

The invariant Laplacian is

∆H = (1− |z|2)2∆ = 4(1− |z|2)2 ∂2

∂z∂z
.

The geodesics are arcs of circles orthogonal to the boundary ∂D. The geodesic Radon
transform of a function f on D is defined as follows:

(RGf)(γ) =

∫
γ

f(z)ds,

where γ is a geodesic. The dual transform (which in analogy with tomography can be
called the geodesic backprojection) is defined as follows:

(R#
Gg)(z) =

∫
γ∈Γz

g(γ)dµz(γ),

where Γz is the set of all geodesics passing through the point z, and µz is the normalized
measure on Γz invariant with respect to the isotropy subgroup of the point z.
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Horocycles are the circles in D tangent to the boundary ∂D. The horocyclic Radon
transform of a function f(z) on D is

(RHf)(ζ) =

∫
ζ

f(z)ds,

where ζ is a horocycle. A horocyclic backprojection operator can be defined analo-
gously to the geodesic one.

In order to describe the Fourier transform on H2 (see[15]), we recall first how the Fourier
transform is defined in the Euclidean case. A function f(x) is integrated being multiplied
first by functions eλ,ω(x):

f → f̃(λ) =

∫
f(x)eλ,ω(x)dx.

Here eλ,ω(x) is the exponent
eλ,ω(x) = eiλ〈x,ω〉,

where ω is a unit vector in Rn, λ ∈ C, and 〈x, ω〉 denotes the standard scalar product
(which can also be understood as the signed distance from 0 to the plane through the
point x orthogonal to ω). The characteristic properties of these exponentials are that
they are plane waves (i.e., eλ,ω is constant on planes orthogonal to ω) and they are joint
eigenfunctions of all constant coefficient linear differential operators in Rn:

Leλ,ω = L(λ)eλ,ω,

where L = L(D), and D = 1
i

∂
∂x

.

This definition of the Fourier transform can be generalized to the case of the hyperbolic
plane (see [15]). Let us denote by 〈z, b〉 the signed (hyperbolic) distance from 0 to the
horocycle through points b ∈ ∂D and z ∈ D. Then the “plane waves”

eλ,b(z) = e(−iλ+1)〈z,b〉, λ ∈ R, b ∈ B = ∂D

are natural analogs of exponents in the Euclidean case. These functions are related to
the Poisson’s kernel

P (z, b) =
1− |z|2

|z − b|2
, z ∈ D, b ∈ B = ∂D

as follows:
e2〈z,b〉 = P (z, b).

Additional similarity with the Euclidean case can be seen in the fact that these functions
are joint eigenfunctions of all invariant linear differential operators on H2 (see [15]). Now
one can define the hyperbolic Fourier transform as follows:

f(z) → f̃(λ, b) =

∫
f(z)eλ,b(z)dµ(z).
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There is a relation
f̃ = FRHf, (1)

with the horocyclic Radon transform RH , where F is the 1-dimensional Euclidean Fourier
transform. This relation is analogous to the so called Fourier slice (or projection slice)
theorem in tomography [25]. Properties of this Fourier transform are described in [15].

3 Inversion of Fourier and Radon transforms on the

hyperbolic plane

A Fourier inversion formula was obtained by Helgason [15]:

f(z) =
1

4π

∫
R

∫
∂D

f̃(λ, b)e(iλ+1)〈z,b〉λ th
πλ

2
dλdb. (2)

Together with formula (1), this also provides a method of inverting the horocyclic Radon
transform RH .

Inversion of the geodesic Radon transform was provided in different forms by S. Helgason
[16] and by C. A. Berenstein and E. Casadio Tarabusi [5].

Helgason’s formula is an analog of Radon’s original formula:

f =
2

π

[(
d

d(u2)

)∫ u

0

(
R#

cosh−1(1/v) (RGf)
) (
u2 − v2

)−1/2
dv

]
v=1

, (3)

where R#
p is the backprojection-type operator that integrates over the set of geodesics

passing at a distance p from a given point.

The formula provided by Berenstein and Casadio Tarabusi is

4πf = −∆SR#
GRGf,

where ∆ is the Laplace-Beltrami operator and S is the operator of convolution with an
explicitly given radial kernel. This is an analog of the so called ρ-filtered backprojection
algorithm in tomography.

A formula that happened to be more convenient for our purpose was obtained by S.
Lissianoi and I. Ponomarev [23]. This formula can be derived from (3). It is an analog of
the filtered backprojection formula in tomography, which enables one to use the standard
one-dimensional FFT for inversion:

f(z) =

−(1− |z|2)2

4π2

∫
S1

1

|s− z|4

(∫ ∞

−∞

(
d

dt
Rf

)(
t− Im (zs)

|s− z|2
, s

)
dt

t

)
|ds| . (4)

Here the following parametrization of geodesics is used:

ξ = {x, s} = {z ∈ D | Im(zs− 1)−1 = x, x ∈ R, s ∈ S1 ⊂ C}.
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4 Numerical implementation and results

Our goal was to implement numerically the hyperbolic Fourier transform, Radon trans-
forms RH and RG, their duals R#

H and R#
G , and their inverse operators. In the Euclidean

case, the standard techniques involve usage of Shannon’s sampling theorem and the FFT.
Sampling is the first problem one encounters when trying to implement these transforms.
Namely, one would want to have a tiling of the hyperbolic plane with “pixels” such that
their (hyperbolic) sizes stay approximately constant, such that one can easily compute
the lengths of intersections of these pixels with geodesics and horocycles, and such that it
is possible to refine the mesh when needed. In the Euclidean case all these problems are
easily resolved by choosing as pixels the fundamental domain of a lattice (a discrete sub-
group of Rn) and its translations with respect to this lattice. An additional advantage of
such a choice is existence of the Fast Fourier Transform algorithm. However, the natural
generalization of this approach to the hyperbolic case fails. Namely, if one wants to use
a discrete subgroup of the Möbius group and sample functions at the points of an orbit
of such a group, then such a mesh cannot be refined. The known rigidity theorems (see,
for instance, Theorem 10.4.5 in [4]) show that there is a lower bound on the area of the
fundamental domain for any such discrete subgroup. This means that pixels chosen as
fundamental domains of discrete groups cannot be made arbitrarily small. After trying
several different approaches (including usage of harmonic analysis on trees, rewriting the
problem on a two-sheeted hyperboloid in R3, and some others), we decided to use the
following one. First of all, a finite index subgroup G in a triangular group (see [4]) was
chosen. The group G is a discrete group of Möbius transformations of the hyperbolic
plane. Its fundamental domain is a heptagon S in H2. However, one cannot use this
heptagon as a pixel, since it has a rather large size. On the other hand, the hyperbolic
metric in this heptagon is rather close to the Euclidean one. Hence, it is a reasonable idea
to use a rectangular Euclidean mesh inside of the heptagon, and then reproduce it in the
translated copies of the fundamental domain by the corresponding Möbius transforms.
This procedure is illustrated on Figure 1. In this figure the Euclidean mesh inside of
the heptagon S extends to its neighborhood, and hence it overlaps with the mesh in the
neighboring heptagons. In practical calculations these overlappings are eliminated. With
this mesh we achieve our main goals: the hyperbolic sizes of pixels are approximately
equal and lengths of intersections of geodesics and horocycles with the pixels can be easily
computed by a computer code. One can successfully use here the capabilities of the C++
language, creating objects like fundamental domains, Möbius transforms, geodesics, and
horocycles, and necessary operations on them.

After the sampling problem is resolved, one can numerically implement the Fourier and
Radon operators and their inverses.

Geodesic and horocyclic Radon transforms are implemented in a standard way: given a
function constant on pixels and a circular arc (a geodesic or a horocycle), one can compute
the hyperbolic lengths of the intersections of the arc with all pixels in the support of the
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function, and then discretize the integral. Now the Fourier transform on H2, according
to formula (1), can be computed as the composition of the horocyclic Radon transform
with the standard 1-dimensional FFT.

Inversion of the Fourier transform, according to formula (2), can be done by compo-
sition of the following operations: multiplication by the weight function λ th (πλ/2),
1-dimensional FFT, multiplication by e〈z,b〉, and averaging over ∂D. (The latter one is
the standard backprojection in tomography [25].)

Formula (1) says that by inverting the Fourier transform on H2, one can simultaneously
invert the horocyclic Radon transform. Namely, knowing the horocyclic Radon image of
a function, one performs a 1-dimensional FFT, and then inverts the hyperbolic Fourier
transform.

Inversion of the geodesic Radon transform can be implemented according to formula (4).
This formula can be rewritten as

f(z) =
(1− |z|2)2

4π2

(
R#

[
H d

dt
(RGf) (t, s)

|s− z|2

])
(z).

Here H is the Hilbert transform, and R# is an averaging operator over a circle (a back-
projection). Hence, the inversion procedure involves multiplication by a weight function,
1-dimensional FFT, filtration in the Fourier domain (in order to account for the differ-
entiation and Hilbert transform), inverse FFT, and a backprojection (averaging over a
circle).

Figures 2 through 5 (according to the Fourier-slice formula (1)) simultaneously represent
inversions of both the horocyclic Radon transform and the Fourier transform.

Figure 2 shows the reconstruction of the characteristic function of the central heptagon.

Figures 3 and 4 represent reconstructions of characteristic functions of chess-board phan-
toms located in different copies of the fundamental domain S.

Figure 5 shows the local tomographic reconstruction of the singularities of a chess-board
phantom (see [21] for the description of the procedure and [10]-[12] for a general discussion
of local tomography).

Figure 6 contains the reconstruction of a chessboard phantom intersected with the central
heptagon from its geodesic Radon transform.

Finally, Figure 7 represents a reconstruction from the geodesic Radon data of a phantom
consisting of the central heptagon S overlapped with a part of a disk.

The significance of this kind of example is that since the phantom intersects several copies
of the fundamental domain, and since the mesh undergoes changes across the boundaries
of these domains, one can expect artifacts along these boundaries. The reconstruction,
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however, behaves well along the boundary. All reconstructions were done with a rather
small number of projections, which explains some artifacts. Namely, 64 projections were
chosen for both horocyclic and geodesic Radon transforms, and 64 horocycles or geodesics
in each projection.
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