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Abstract. The article contains a brief survey of some spectral
problems of mathematical physics that have been arising recently
in optics, mesoscopic systems, quantum chaos, and other areas. In
particular, problems of photonic crystal theory, waveguides, and
quantum graphs are addressed. This text is a modified version
of the lectures delivered at the Pan-American Advanced Studies
Institute (PASI) on Partial Differential Equations, Inverse Prob-
lems and Non-Linear Analysis, January 6-18, 2003, Universidad de
Chile, Santiago, Chile.

1. Introduction

This article is a brief survey of some spectral problems of mathemat-
ical physics that have been arising recently in optics, mesoscopic sys-
tems, quantum chaos, and other areas. Going into details and providing
comprehensive references would make such a survey a monograph. So
I chose instead to provide pointers to more extended surveys, where
the interested reader could find detailed exposition and bibliography.

This text is a modified version of the lectures delivered at the
Pan-American Advanced Studies Institute (PASI) on Partial Differ-
ential Equations, Inverse Problems and Non-Linear Analysis, January
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6-18, 2003, Universidad de Chile, Santiago, Chile. I express my grati-
tude to the organizers of the Institute, especially to Professor Gunther
Uhlmann, for the invitation.

2. Photonic crystals

Photonic crystals or photonic band-gap (PBG) media are artifi-
cially created optical materials that are in some sense optical analogs
of semiconductors. The reader can look into recent books and sur-
veys [80, 84, 98, 145, 153] for physics and mathematics details of
photonic crystal theory, engineering, and applications. One can imag-
ine a photonic crystal as a chunk of dielectric (insulator) with cavities
(“bubbles”) carved out in a periodic manner and filled with a different
dielectric (e.g., air). The name photonic crystal comes from analogies
with natural crystals that are also periodic media, and also from the
idea that photonic crystals behave with respect to photon propagation
similarly to the behavior of semi-conductors with respect to the elec-
tron propagation. In order to make this more explicit, let us start with
recalling some notions from the solid state theory (e.g., [5]).

2.1. A solid state prelude. Pure semiconductors are crystals
periodic with respect to a discrete co-compact subgroup Γ ⊂ R3 acting
on R3 by shifts. Such a group is called a lattice. Co-compactness
means that the orbit space R3/Γ is compact, or in other words the
action of Γ has a compact fundamental domain W , i.e. a domain such
that its translations by elements of Γ are pairwise disjoint and tile the
whole space. The choice of a fundamental domain W is not unique;
one can for instance include into W all points that are closer in terms
of Euclidean distance to the origin that to any other point of Γ. In
physics W is sometimes called the Wigner-Seitz cell.

The dual lattice Γ∗ consists of all vectors k in the dual space
R3∗ such that 〈k, γ〉 is an integer multiple of 2π for any γ ∈ Γ. If
R3 is equipped with an Euclidean structure, then its dual R3∗ can be
identified with R3, and then 〈k, γ〉 is just the inner product of two
vectors. E.g., (Zn)∗ = 2πZn.

In the discussions that follow almost nothing will depend signifi-
cantly on the choice of the group (difficulties arising sometimes, e.g.
in establishing finiteness of the number of spectral gaps, will be swept
under the rug in this text). So, it is safe for the reader to assume
that Γ is just the integer lattice Z3 (or Zn when other dimensions are
considered).
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Neglecting electron-electron interaction, the wave function ψ of an
electron in a semi-conductor satisfies the Schrödinger equation

−∆ψ + V (x)ψ = Eψ,(1)

where E is the energy of the electron and V (x) is a Γ-periodic real-
valued function (electric potential) determined by the crystal. A signif-
icant part of the solid state theory is devoted to studying the spectrum
in L2(R3) of the (appropriately defined) Hamiltonian

H = −∆ + V (x).(2)

We would like to emphasize once more that this model neglects electron-
electron interaction, an approximation, which is not always acceptable.
Taking this interaction into the account leads to a significantly more
complex analysis of multi-particle Hamiltonians. We will not touch
upon these topics, but will notice a difference with the case of photonic
crystals later.

Our goal now is to sketch some important spectral features of pe-
riodic Schrödinger operators (2), referring the reader to the literature
(e.g., [34, 47, 86, 96, 97, 98, 124, 135, 151, 152, 158] and refer-
ences therein) for the details. However, before doing so we would like
to mention the main tool for studying periodic operators, the so called
Floquet theory [47, 86, 96, 97, 98, 135, 151, 152], an analog of
Fourier transform suitable for work with periodic operators. In physics
this theory is usually associated with the name of F. Bloch [31] rather
than G. Floquet [65] (Floquet theory was developed much earlier than
Bloch theory, but mostly for ODEs).

2.2. A sketch of Floquet theory. In order to explain the main
idea of Floquet theory, let us start with some standard Fourier analysis.
Let us consider a linear constant coefficient partial differential opera-
tor L(D), where as usual D = 1

i
∂
∂x

. This operator is invariant with
respect to the (transitive) action of the additive group Rn on itself via
translations. This leads to the natural idea of applying the Fourier
transform, after which L becomes the operator of multiplication by the
function L(ξ) in L2(Rn), where ξ denotes the variable dual to x. The
spectrum of such an operator coincides with the range of L(ξ). In other
words, if we draw the graph of the function λ = L(ξ), its projection on
the λ-axis produces the spectrum (Fig. 1). One can also understand
how the point spectrum can arise. If there were a non-zero L2-function
f(x) and an eigenvalue λ such that L(D)f(x) = λf(x) a.e., then after

the Fourier transform one obtains that L(ξ)f̂(x) = λf̂(ξ), and hence
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L(ξ) = λ on a set of positive measure. Since L(ξ) is analytic (even
polynomial), this would imply that L(ξ) is constant.

Figure 1. The spectrum of the operator of multiplica-
tion by L(ξ).

To move closer to the situation of periodic operators, consider a
constant coefficient system L(D) with the symbol L(ξ) that is a self-
adjoint matrix function. Then the same Fourier approach shows that
the spectrum can be found as follows: find the (continuous) eigenvalue
branches λj(ξ) (dispersion relation branches or band functions)
of the matrix function L(ξ) and take their ranges (i.e., project their
graphs onto the λ-axis). Each of the branches then provides a band
(i.e., a segment) in the spectrum (see Fig. 2).

Figure 2. The dispersion curves and the band-gap
structure of the spectrum of the operator of multipli-
cation by the matrix L(ξ).
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One can think that in some cases the bands might have a gap
between them.

As in the scalar case, existence of the point spectrum is equivalent to
existence of flat pieces on the graphs of the band functions, which due
to analyticity implies existence of a constant branch. We would like to
look at this from a different angle: if we can prove absence of constant
band functions, this would imply absence of pure point spectrum. In
fact, a small additional effort yields that the whole spectrum is then
absolutely continuous. We will return to this discussion later.

Let us now tackle periodic operators. Consider a linear partial
differential operator L(x,D), whose coefficients are periodic with re-
spect to a discrete group of translations Γ acting on Rn (for instance,
Γ = Zn)1. Due to invariance of the operator with respect to this group,
it is natural to apply the Fourier transform on Γ, which on Γ = Zn

amounts to the assigning to a sufficiently fast decaying function h(l)
on Zn the Fourier series

ĥ(k) =
∑

l∈Zn

h(l)eik·l,(3)

where k ∈ Rn (or Cn). We now have to be able to apply this transform
to functions defined on Rn. Let f(x) be a function decaying sufficiently
fast. We can define its Floquet transform (also called Gelfand
transform) as follows:

Uf(x, k) =
∑

l∈Zn

f(x− l)eik·l.(4)

This transform is an analog of the Fourier transform for the periodic
case. The parameter k is called quasimomentum (for physics reasons
[5]) and it is an analog of the dual variable in the Fourier transform.
Notice that the action of the group Γ on Rn is not transitive, in contrast
to the action of Rn on itself. Hence, the space of orbits of this action
contains more than one point, and as a result, the transformed func-
tion still depends on the old variable x. Let us notice two important
relations:

(Uf) (x + l, k) = eik·l (Uf) (x, k), for all l ∈ Zn(5)

and

Uf(x, k + γ) = Uf(x, k), γ ∈ 2πZn.(6)

The first of them (5) is the so called Floquet condition (or cyclic
condition). It shows that it is sufficient to know the function Uf(x, k)

1The reader can refer to [5, 80] for a brief introduction into general lattices,
Brillouin zones, etc.
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only at one point x of each orbit x+Zn in order to recover it completely.
For instance, it is sufficient to know it only for x ∈ W , where W is any
fundamental domain for the action of Zn on Rn.

The second identity (6) means that the function Uf(x, k) is periodic
with respect to the quasimomentum k. Notice that the lattice of the
periods with respect to k is dual (or reciprocal) to the lattice the
operator was periodic with respect to. We conclude that k can be
considered as an element of the torus T∗ = Rn/2πZn. Another way
of saying this is that all information about the function Uf(x, k) is
contained in its values for k in the fundamental domain of the dual
lattice Γ∗ = 2πZn. We can define such a domain B as the set of all
vectors k that are closer to the origin than to any other point of Γ∗. In
the solid state physics this domain is called the (first) Brillouin zone.

So, after the Floquet transform one ends up with a function Uf(x, k),
which can be considered as a function of k on the torus T∗ (or on the
Brillouin zone B) with values in a space of functions of x on the com-
pact Wigner-Seitz cell W . Compactness of the new domain W plays
the crucial role in the whole Floquet theory.

It is sometimes useful to employ an alternative version of the trans-
form U :

Φf(x, k) =
∑

l∈Zn

f(x− l)e−ik·(x−l) = e−ik·xUf(x, k).(7)

While the function Uf(x, k) was periodic in k and satisfied the Floquet
(cyclic) condition with respect to x, the function Φf(x, k) is periodic
with respect to x and satisfies a cyclic condition with respect to k:

{
Φf(x + l, k) = Φf(x, k), l ∈ Γ = Zn

Φf(x, k + γ) = e−iγ·xΦf(x, k), γ ∈ Γ∗ = 2πZn .(8)

When k changes, the values of Φf(·, k) belong to the same space of
functions of x on the torus T = Rn/Zn. It is still sufficient to know
the values of Φf(x, k) for x in the Wigner-Seitz cell W and k in the
Brillouin zone B in order to recover the whole function.

As for the regular Fourier transforms, one can prove analogs of
Plancherel and Paley-Wiener theorems that describe the ranges of the
L2(Rn) and of some spaces of smooth decaying functions under the
Floquet transform [97]. Such theorems are very significant for many
issues of spectral theory of periodic operators, same way as in the reg-
ular Fourier analysis. Let us formulate an analog of the Plancherel
theorem. Below we assume that the natural measures dk on the Bril-
louin zone B and the dual torus T∗ are normalized.
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Theorem 1. The transforms

U : L2(Rn) → L2(T∗, L2(W )), Φ : L2(Rn) → L2(B, L2(T))

are isometric. Their inverse transforms are:

Φ−1v(x) =

∫

B

eix·kv(x, k)dk

and

U−1w(x) =

∫

T∗

w(x, k)dk,

where the function v(x, k) ∈ L2(B, L2(T)) is considered as periodic
function with respect to x ∈ Rn and w(x, k) ∈ L2(T∗, L2(W )) is ex-
tended from W to all x ∈ Rn according to the Floquet condition (5).

This theorem, used constantly in solid state physics since Bloch
[31], was introduced into mathematics for spectral analysis of periodic
differential operators by I. Gelfand [71] (see XIII.16 in [135] and Chap-
ters 2, 4 of [97] for discussion and further references). It can also be
understood as expanding the space L2(Rn) into a direct integral [135].
The proof of the theorem is straightforward, since (4) is just a Fourier
series with coefficients in the Hilbert space L2(W ) and the standard
Plancherel’s theorem applies to such series. It is easy to prove an ana-
log of such a theorem for the Sobolev space Hs(Rn) instead of L2(Rn),
albeit it requires using Banach vector bundles [97].

Let us look at how a periodic differential operator L(x,D) would
react to the Floquet transform. A straightforward calculation shows
that

U (Lf) (x, k) = L(x, Dx)Uf(x, k)(9)

and

Φ (Lf) (x, k) = L(x,Dx + k)Φf(x, k) = L(k)Φf(·, k).,(10)

where we indicate with the subscript x in Dx that D differentiates with
respect to x rather than k.

Looking at (9), one observes that for each k the operator L(x,Dx)
now acts on functions satisfying the corresponding Floquet condition
(5). In other words, although the differential expression of the operator
stays the same, its domain changes with k. If we denote this operator
by L(k), we see that the Floquet transform expands the operator L in
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L2(Rn) into the “direct integral” of operators

⊕∫

T∗

L(k)dk(11)

This is analogous to the situation of the constant coefficient systems
of equations, only instead of matrices L(ξ) we have to deal with oper-
ators L(k) in infinite-dimensional spaces. The crucial circumstance is
that these operators act on functions defined on a compact manifold (a
torus), while the original operator L acted in Rn. Thus, under appro-
priate ellipticity conditions, these operators have compact resolvents,
and hence discrete spectra. Then we can define again the band func-
tions (dispersion relations) λj(k) and obtain a picture analogous to
Fig. 2 with the difference that the number of branches is now infinite.
We see that the spectrum is expected to have a band-gap structure,
and there is a hope of opening spectral gaps.

The transform Φ does not commute with periodic differential op-
erators anymore. So, using it instead of U we gain a fixed function
space, while the differential expression for the operator L(k) changes
with k. The periodic operator L(x,D) in Rn becomes a family (in
fact, a polynomial with respect to k) of operators L(k) = L(x,D + k).
Here each of the operators L(k) acts on the torus T, a compact closed
manifold. In particular, if L is elliptic, we are dealing with an analytic
(polynomial) operator function L(k) whose values are Fredholm oper-
ators in appropriate spaces. This enables one to invoke the rich theory
of such operator functions (e.g., [162], Chapter 1 of [97], discussion
and further references therein). This technique is a crucial part of the
study of periodic elliptic operators.

2.3. Some spectral properties of periodic elliptic operators.
We will briefly survey in this section several spectral properties of peri-
odic Schrödinger operators that are relevant for solid state physics and
whose analogs are of importance for PBG materials as well. We will
touch upon the known results and open problems for such operators, as
well as for more general scalar elliptic periodic operators. In the next
section we will return to discussion of similar problems in the photonic
crystal setting.

2.3.1. Band-gap structure of the spectrum. We have already con-
cluded that the spectra of periodic elliptic differential operators exhibit
band-gap structure (see [97, 98, 135, 152] for details and references).
If we have a self-adjoint periodic operator L = L(x, D) in L2(Rn),
the Floquet transform expands it into the direct integral of operators
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L(k) = L(x, D + k) on the torus T. The main spectral statement is:

σ(L) =
⋃

k∈B

σ(L(k))(12)

(see [47, 97, 98, 135, 152]). Ellipticity of the operator and com-
pactness of W imply that the spectrum of each L(k) is discrete. If
L is bounded from below, the spectrum of L(k) accumulates only at
the positive infinity and one can choose continuous eigenvalue branches
λj(k) (the jth eigenvalue of L(k) counted in the increasing order with
the multiplicity) called band functions or branches of the dispersion
relation). We conclude that the spectrum σ(L) consists of the closed
intervals (spectral bands) Sj

Sj = [min
k

λj(k), max
k

λj(k)],(13)

where min
k

λj(k) →∞ when j →∞.

Existence of spectral gaps, i.e. intervals of the spectral axis not
covered by any spectral bands is what makes a crystal a semi-conductor
and brings about most marvels of electronics [5]. We talk here about
finite gaps only, rather than the infinite gap below the spectrum.

It is well known that for ordinary differential operators of the second
order the bands cannot overlap (although they can touch) [47, 135,
158], which explains why it is a generic situation in 1D that all spec-
tral gaps are open between adjacent bands (see [135]). In dimensions
two and higher the bands can and normally do overlap, which makes
opening gaps much harder [47, 97, 135, 152]. It is still conceivable
that at some selected locations the bands might not overlap and hence
open a gap in the spectrum.

In the next subsection we will deal with the questions of existence
and number of spectral gaps.

2.3.2. Existence and the number of gaps. Unlike the one-dimensional
case, when generically infinitely many spectral gaps exist, it is believed
that in dimensions two and higher only finitely many gaps can exist
in the spectrum of a self-adjoint periodic elliptic operator. This is the
so called Bethe-Sommerfeld conjecture [19, 152]. It has been proven
for Schrödinger operators with periodic electric potentials [44, 85, 86,
152], [159]-[161] and recently in dimension two also for such oper-
ators in presence of periodic magnetic potentials as well [118, 87].
Although the proofs in the papers cited are different, most of them
are of a perturbative nature. Namely, one considers first the “free”
operator, where all potentials are equal to zero. In this case one shows
that spectral bands are overlapping, with the size and multiplicity of
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the overlap growing at large energies. This often requires some number
theory results. Then it is shown that the band overlap is so strong that
turning on the potentials cannot eliminate it (and hence open gaps) at
high energies.

Since in the multiple dimensions the number of gaps is finite, one
can ask whether the gaps must exist at all. The answer is: they do
not have to. For instance, it is easy to show that the Schrödinger
operator with a sufficiently small periodic electric potential does not
posses any spectral gaps at all [86, 97, 152]. So, not every crystal
is a semi-conductor. This is in a stark contrast with the 1D case,
where the celebrated Borg’s uniqueness theorem [33] says that absence
of gaps implies that the electric potential is constant. Luckily for our
technology, many natural crystals with such gaps exist. As we will see,
we do not have such a luck with photonic crystals, which practically
do not exist in nature and need to be manufactured.

It is interesting to figure out what regimes favor opening the spectral
gaps. For Schrödinger and for more general periodic elliptic operators

−
n∑

i,j=1

∂

∂xi

ai,j(x)
∂

∂xj

+
n∑

i=1

bi(x)
∂

∂xi

+ c(x),(14)

there are three types of such regimes well known.
The most common one works for the Schrödinger operator (2) as fol-

lows (the hand-waving below can easily be made precise). Let us start
for simplicity with the (negative) Laplace operator −∆ (i.e., V (x) = 0),
which has the non-negative half-axis R+ as its spectrum. Let us now
introduce a negative localized potential V0(x) (a potential well). This
is known to possibly (and in 1D necessarily) produce a negative eigen-
value λ0 that corresponds to an eigenfunction φ0(x) ∈ L2(Rn) (the
electron with the energy λ0 is trapped by the potential well V0(x) in
the bound state φ0(x)). Let us now create a new (periodic) potential
V (x) =

∑
γ∈MΓ

V0(x − γ), where Γ is a lattice in Rn and M is a large

parameter. In other words, the periodic potential is constructed by a
periodic repetition of copies of V0(x) far apart from each other. If the
eigenfunction φ0(x) had compact support, then for large M we would
have its Γ-shifted copies as eigenfunctions as well. This would add
infinite multiplicity to the eigenvalue λ0 without moving it. However,
due to standard uniqueness theorem, compactness of support would
imply that the eigenfunction were identically equal to zero. Hence, the
eigenfunction has a long tail and senses the presence of other wells.
Thus, the electron has a chance to tunnel to them. So, periodizing
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the potential changes this portion of the spectrum. However, if M is
large, and so the copies of V0(x) are far apart, the tunnelling is weak
(an electron in one potential well feels only slightly presence of other
wells). Hence, the spectrum shifts just a little bit, and one obtains
a very narrow band of spectrum near λ0. This means that there will
remain a gap between this band and the rest of the spectrum above it.
This is how spectral gaps can be created using the tunnelling effect.
Let us notice that the crucial ingredient in this construction was our
ability to shift the bottom of the spectrum to a new position λ0 below
the initial 0. We will see that this possibility is missing in the case of
photonic crystals.

The second way to open a gap is to employ high contrasts in the
properties of the medium. This technique is normally not used for
Schrödinger operators. It is important, though, for more general op-
erators, e.g. Laplace-Beltrami operator, where high contrast in the
metric aij in (14) can be used successfully for opening spectral gaps.
One can find discussion of the results in this direction in [74, 98, 134].
We will also see later on in this text that this is a favorite approach in
the optics case.

The third possibility for gap opening that has been discussed in
the literature is to use identical scatterers distributed throughout the
medium [130, 131]. This approach (which in fact does not necessarily
require periodicity of the medium) will be addressed more in the section
devoted to quantum graphs (see also [9, 104, 147].

2.3.3. Absolute continuity of the spectrum. Another physically im-
portant property is the structure of the spectrum. Namely, under-
standing presence or absence of the pure point, absolute continuous, or
singular continuous parts in the expansion

σ(L) = σpp ∪ σac ∪ σsc.(15)

Physically, the eigenfunctions of the pure point spectrum correspond to
the bound (or trapped) states, while the ones of the absolutely continu-
ous spectrum are interpreted as propagating modes. It has been known
for a long time that the singular continuous part is missing from the
spectra of periodic Schrödinger operators (e.g., [97, 135, 151, 157]).
Close inspection of the proof (e.g., the one given in [97, 151]) shows
that it works for any periodic elliptic operator. This was explicitly
stated in [72], where it was proved for general “analytically fibered”
operators

∫
L(k), where each L(k) has compact resolvent. The task of

proving absolute continuity of the spectrum boils down now to showing
absence of eigenvalues. Although it has been unanimously believed by
physicists for a long time (since beginnings of the quantum solid state
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theory), proving this statement happens to be a hard problem (it is
false, by the way, for periodic elliptic operators of higher order [97]).
For the Schrödinger case in 3D it was proven in the celebrated paper
[157] by L. Thomas and then extended to more general potentials in
[135]. A significant advance was started by the paper [26], where ab-
solute continuity was proven in 2D for the Schrödinger operator with
both magnetic and electric periodic potentials. This result was ex-
tended in [154] to any dimension (see also [107] for a simplification).
One can find more references and a nice survey of most known results
in [28]. The deficiency of all these result was that they addressed only
operators with constant coefficients in the leading terms, or those that
could be reduced to this case (for instance, by using isothermal coor-
dinates). A breakthrough was made in [69], where absolute continuity
was proven for essentially arbitrary periodic elliptic operator (14) of
second order (under some smoothness conditions on the coefficients).
The only caveat is that it is required in [69] that (if Zn is the lattice
of the periods) the operator commutes with the change of sign of one
of the coordinates. This symmetry condition does not seem necessary,
but no one has succeeded in removing it yet.

We will now indicate the main thrust of the Thomas’ proof and of
all its extensions. The major step is to use analytic continuation into
the domain of complex quasimomenta k. The following basic theorem
first proven in [157] for Schrödinger operators holds:

Theorem 2. Let L be a periodic elliptic operator. Then the fol-
lowing statements are equivalent:

a) The point λ is an eigenvalue of L in L2(Rn), i.e., there is a
non-zero L2-solution of the equation Lu = λu in Rn;

b) For any k ∈ Cn there exists a non-zero solution of the equation
L(k)v = λv on the torus.

The proof is not hard [97] and follows the idea stated previously:
having an eigenvalue λ of L, after Floquet transform one concludes
that it is an eigenvalue of L(k) for a positive measure set of (real)
quasimomenta k. Then analytic continuation shows that this must
also be true for all complex k. The converse statement is also simple.

Let us interpret this result in a different way. One obtains the
following key corollary:

Corollary 3. If for any λ there exists a quasimomentum k ∈ Cn

such that the equation L(k)v = λu has no non-trivial solutions on the
torus T, then the spectrum of the operator L is absolutely continuous.
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All the known proofs of absolute continuity (including [69]) follow
the following pattern: using the freedom of going into the domain of
complex quasimomenta, one finds a vector k ∈ Cn such that the equa-
tion L(k)v = λu has no non-trivial solutions. Except in [69], this is
done by the method that can be easily explained for the case consid-
ered first in [157]: Schrödinger operator −∆ + v(x) with a periodic
potential v. If one can show the absence of periodic solutions of the
equation (D + k)2u + vu = λu for an appropriately chosen (depending
on λ) complex quasimomentum k, the job is done. It is not hard to
choose a quasimomentum with a large imaginary part in such a way
that the L2-norm of (D + k)2u term dominates the norm of zero order
terms vu − λu, and hence no non-trivial solutions can exist (see for
instance [157, 135, 97] for details). Although the idea stays the same,
treatment of more general operators involving non-constant first order
terms becomes much more complex. This method of dominating the
lower order terms by the leading ones had essentially precluded proving
absolute continuity for the case when variable coefficients are present
in the leading terms of the operator (the two-dimensional case is an
exception, due to the availability of isothermal coordinates). The sit-
uation changed with the appearance of [69], where the “domination”
approach described above was not used, while the rest of the general
Thomas’ scheme was still preserved.

2.3.4. Impurity spectra. Both in the solid state physics and in the
photonic crystal studies it is important to understand what happens
to the spectrum of a periodic operator when the operator is perturbed
in some specific ways. In the case of a Schrödinger operator, the case
of interest is adding either a localized, or randomly distributed pertur-
bation to the potential. This corresponds to adding impurities to the
periodic medium (crystal). The reason for studying these questions is
not just that often the media are not purely periodic and one wants to
know what is the effect of having such impurities. Indeed, it is often
(e.g, in laser physics) desirable to have such impurities, and so studying
impurity spectra becomes an important task.

In the case of a compactly supported perturbation of the potential,
usually a version of the Weyl’s theorem [135] is applicable that guar-
antees that the essential spectrum is not perturbed. This means that
only additional eigenvalues of finite multiplicity can arise. In principle,
one can expect two distinct types of those: impurity eigenvalues aris-
ing in the gaps of the spectrum, and the ones arising on the original
essential spectrum (so called embedded eigenvalues). It is generally ex-
pected that embedded eigenvalues should be absent if the perturbation
is decaying fast enough (otherwise there are counterexamples). There
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is a rather large body of work devoted to proving the absence of em-
bedded eigenvalues in the case when the background potential is zero
(e.g., [43, 48] and references therein). Although the case of a periodic
background potential is completely resolved in 1D [136, 137], for di-
mensions two and higher there appears to be only one rather limited
result of [111] known. It was also shown in [111] that the problem of
absence of embedded eigenvalues appears to be linked to the extremely
hard problem of analytic irreducibility of the so called Fermi surface.

Most of the attention has been paid to the impurity eigenvalues
inside the gaps, which are responsible for many useful properties of
doped semi-conductors. We will not dwell on this, referring the reader
to available surveys (e.g., [20]-[22]).

An important case is of a random perturbation of the potential,
the subject of studies of the so called Anderson localization. We will
skip this issue and direct the reader to [38, 129, 156] and references
therein.

2.3.5. Spectral behavior near the gap edges. Suppose that [a, b] is
a gap in the spectrum of one of the periodic problems we have been
discussing. This means that a is the maximal value of a band function
λj(k). Analogously, b is the minimal value of another band function. In
many cases (some of which will be mentioned later) it is important to
know in which way these extrema are attained: are they isolated, non-
degenerate, etc.? There is a conjecture that the band edges generically
are non-degenerate single extrema of dispersion relations. Unfortu-
nately, there is almost no information about this. The only exception
is the recent result of [89], which states that generically each gap end-
point is an extremal value of a single band function λj (nothing is still
known about it being isolated and non-degenerate). The problem still
remains a challenge.

The bottom of the spectrum (which is the upper end of the infinite
gap (−∞, a]) is the only gap end at which the behavior of the disper-
sion curves is well understood. The result of [88] concerns a periodic
Schrödinger operator H = −∆ + V (x) in Rn and establishes that the
bottom of the spectrum truly is a single non-degenerate minimum. Let
us denote as before

H(k) = (D + k)2 + V (x).

Let the band functions λj(k) provide the eigenvalues of H(k), with
λ1(k) being the lowest one.
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Theorem 4. (Theorem 2.1 in [88]) Let ψ0 be the positive periodic
solution of Hψ0 = λ1(0)ψ0. Then

(min ψ0/ max ψ0)
2k2 ≤ λ1(k)− λ1(0) ≤ k2.

This theorem implies that the bottom of the spectrum is attained
only at the zero quasimomentum k = 0, and that around that point
the lowest band function behaves as

λ1(k) = λ1(0) + γ(k) + O(k4),

where γ(k) is a positive definite quadratic form of k.
A thorough study of the behavior at the bottom of the spectrum of

dispersion curves of periodic elliptic operators (including matrix opera-
tors, in particular Pauli and Maxwell operators) has been done recently
in a series of papers by M. Birman and T. Suslina [27, 29] (see also
[133]).

Any results of this kind for the higher gaps that we described for
the bottom of the spectrum would be of great importance, since the
band edge behavior is closely related to many issues. One can list
among them homogenization theory [18, 29, 78], Liouville type the-
orems about the structure and dimension of the spaces of polynomi-
ally growing solutions [110], Anderson localization (already mentioned
above), and behavior of the impurity spectra in the gaps [20, 22]. The
notion of the effective masses, common in solid state physics [5] also
assumes non-degeneracy of the band edge. One should mention the
recent advance in [23], where a version of homogenization theory was
developed for internal gap edges for periodic ODEs (the standard ho-
mogenization is related to the bottom of the spectrum only). A PDE
analog is considered in [30].

2.4. PBG materials and the spectral structure of periodic
Maxwell operators. We are finally moving now to the optics case. As
it was explained before, a photonic crystal, or a PBG (photonic band-
gap) medium is a dielectric (i.e., insulator) material with a spatially
periodic structure. One is interested in propagation of electromagnetic
waves in such a material (and in fact tailoring the material to obtain
desired properties). While in solid state physics the governing equation
is Schrödinger equation, in optics it is the Maxwell system [77, 115].
A thorough study of spectral theory of Maxwell operators in bounded
domains can be found in [24, 25].

2.4.1. The governing equations. The macroscopic Maxwell equa-
tions that govern the light propagation in absence of free charges and
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currents look as follows:{ ∇× E = −1
c

∂B
∂t

, ∇ ·B = 0
∇×H = 1

c
∂D
∂t

, ∇ ·D = 0
(16)

Here c is the speed of light, E and H are the macroscopic electric
and magnetic fields, and D and B are the displacement and magnetic
induction fields respectively [77, 115]. All these fields are vector-valued
functions from R3 (or a subset of R3) into R3. We denote such fields
with boldface letters. The standard vector notations ∇× (or ∇×), ∇·,
and ∇ are used for the curl, divergence, and gradient, although we will
use curl, div, and grad as well. The system (16) is incomplete until
we add the so-called constitutive relations that describe how the fields
D and B depend on E and H. Although in general these relations are
non-linear and even non-local, in materials other than ferroelectrics
and ferromagnets and when the fields are weak enough, the following
linear approximations to the constitutive relations work:

D = εE, B = µH.(17)

Here ε and µ are the so called material tensors. We will only ad-
dress the case of isotropic media, where ε and µ can be considered as
scalar time independent functions called electric permittivity (or di-
electric constant) and magnetic permeability correspondingly. In most
photonic crystal considerations it is assumed that the material is non-
magnetic and so we can take µ = 1. The electric permittivity function
ε(x) will be assumed periodic with respect to a lattice in R3.

The linear PDE system (16) has time-independent coefficients, so
the Fourier transform in the time domain reduces considerations to the
case of monochromatic waves E(x, t) = eiωtE(x), H(x, t) = eiωtH(x),
where ω is the time frequency. From now on we will consider such
waves only. This leads from (16) to{ ∇× E = − iω

c
H, ∇ ·H = 0

∇×H = iω
c
ε(x)E, ∇ · εE = 0

,(18)

or after eliminating the electric field E, to

∇× 1

ε(x)
∇×H = λH, ∇ ·H = 0.(19)

Here λ = (ω/c)2 plays the role of the spectral parameter. Now (19)
will be our replacement for the Schrödinger spectral problem that we
discussed in the solid state case.

We would like to mention that in applications of interest photon-
photon interaction is negligible, and the Maxwell system is considered
to be an extremely good model. This is in contrast with the solid
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state case, where the one-particle Schrödinger operator often cannot be
considered as a very precise model. On the other hand, the constitutive
relations might become more complex (nonlinear and non-local). Then
one arrives to the nonlinear optics, where the Maxwell equations must
be modified to some nonlinear versions [116]. We will not address the
nonlinear problems here and refer the reader to [12]-[15], [153] for
further reading and references on nonlinear photonic crystals.

One of the principal tasks of the photonic crystals theory is to
choose a periodic function ε(x) ≥ 1 such that the spectrum of the cor-
responding problem (19) has a gap. Existence of such a gap would
mean that electromagnetic waves with a frequency ω in the gap cannot
propagate in the material. This in turn would make many wonderful
applications to light sources, lasing, optical waveguides, optical com-
puting, mirrors, etc. possible [80, 84, 145].

The vector nature of the Maxwell operator and presence of zero-
divergence conditions in (19) sometimes complicate the study a lot in
comparison with the Schrödinger case. There is one important excep-
tion, though, where this complication disappears. This is the case of
a 2D medium, i.e. a medium where the electric permittivity ε(x) does
not depend on one of the variables (say, z) and is periodic with re-
spect to the other two x ∈ R2. One can think of such a medium as
2D-periodic in the x-variables and homogeneous with respect to the
“vertical” variable z. One can check then that the Maxwell system is
reduced by the complementary subspaces,/ one consisting of the fields
where the electric field E is normal to the periodicity plane (and hence
has the form E = (0, 0, E(x)), where E(x) is a scalar periodic func-
tion), while the other has magnetic filed H = (0, 0, H(x)) normal to
the periodicity plane. In these two subspaces the spectral problem (19)
reduces respectively to the following scalar ones:

−∆E = λε(x)E(20)

and

−∇ · 1

ε(x)
∇H = λH,(21)

where as before λ is related to the time frequency ω as λ = (ω/c)2.
2.4.2. Floquet theory for periodic Maxwell operators. Let us de-

note by M the operator M = ∇× 1
ε(x)
∇× on the subspace of fields

F satisfying ∇ · F = 0 (the precise definition of the operator requires
some technicalities that we skip, the reader can refer for instance to
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[24, 29, 56, 59, 61]). Our task is to study the spectrum of this oper-
ator and to design periodic dielectric permittivity functions ε(x) such
that the spectrum has desired properties (for instance, gaps).

The first question to ask is whether the Floquet theory described
above applies to the Maxwell operator. The answer is essentially a
“yes,” but some additional difficulties do arise. The main results of
Floquet theory as indicated above and as described in more detail in
[97] work for elliptic (or at least hypoelliptic) operators. Ellipticity
influences not only the technique, but also the results one might expect
(see, e.g. [97, 98]). What one needs, is that the operators L(k) (acting
on a torus) in the Floquet decomposition (11) have compact resolvents.
Ellipticity guarantees this. However, the Maxwell operator M taken
alone is not elliptic. The correct idea is to include it into an elliptic
complex (or to extend to a larger elliptic operator [75, 24, 25], which
is essentially the same). Consider the example of the homogeneous

Maxwell operator M = (∇×)
2
. Acting from the cokernel of the gradient

into the kernel of divergence, it is a part of an elliptic complex formed
by the operators grad, M , and div. In other words, M is the middle
part of an elliptic complex of operators containing besides M also the
gradient and divergence, but not an elliptic operator standing alone.

Now one can apply the Floquet transform to the whole elliptic
complex. And here the problem arises: after the transform the operator
M(k) will act between the cokernel of grad(k) = (∇+ik) and the kernel
of div(k) = (∇ + ik)·, where all operators are acting now on periodic
functions. It is easy to check by the Fourier series expansion, however,
that these spaces (i.e., cokernel and kernel respectively) do not depend
analytically on k. Indeed, let us expand the field F into the Fourier
series

∑
γ∈Γ

eiγ·xFγ. Then for k 6= 0 the condition (∇+ ik) ·F = 0 implies

that the vectors (γ + k) and Fγ are orthogonal and so Fγ belongs to
the two-dimensional orthogonal complement of (γ + k). On the other
hand, for k = 0 the coefficient F0 can be arbitrary. This means a
non-analytic behavior of Ker(div(k)) at k = 0. The same thing is
true for the cokernel of grad(k). In technical terms, this situation
forces one to work with sections of analytic sheaves instead of sections
of analytic vector bundles. Although this is possible (see for instance
[128], where the main result of [96]-[97] was extended to the case
of elliptic complexes), the technical complications can sometimes be
severe.

In any case, one can extend to the Maxwell system the basics of
the Floquet theory, including Floquet transforms, band-gap structure
of the spectrum, and analyticity of dispersion curves (see, for instance



ON SOME SPECTRAL PROBLEMS OF MATHEMATICAL PHYSICS 19

[29, 56, 59, 61]). Now one can attempt a detailed spectral analysis
similar to the one done for periodic Schrödinger operators.

2.4.3. Problems of spectral theory of PBG materials. We want now
to address the spectral problems for (19) analogous to the ones dis-
cussed above for periodic Scgrödinger operators.

• The band-gap structure of σ(M) still holds, as it was men-
tioned above. This means that the piecewise analytic band functions
(branches of the dispersion curve) λj(k) can be defined, and the spec-
trum consists of the union of their ranges Sj (bands) such that each
Sj is a finite closed interval Sj = [aj, bj] and lim

j→∞
aj = ∞.

• Absence of the singular continuous spectrum still holds,
with no change in the proof for analytically fibered operators [72].

• Absolute continuity of the spectrum (or absence of bound
states) has been established in the case of sufficiently smooth dielectric
function ε(x). This was done in [120], where it was shown that this
problem can be reduced to a similar one for a non-self-adjoint matrix
Schrödinger operator, for which the standard Thomas’ approach works
(see also [107]). In practical applications, though, the photonic crystals
are created by mixing two different dielectrics (e.g., cutting air holes
in a dielectric slab). This means that ε(x) is piecewise constant, and
hence not even continuous. The problem of extending this result to
such dielectric functions remains open (as well as for other spectral
results to be discussed).

The case of a 2D photonic crystal is simpler, at least for the E-
polarized waves (20), where the absolute continuity of the spectrum
for a piecewise-constant electric permittivity follows from the Thomas’
result for the Schrödinger operator. The H-polarized case (21) is still
waiting for the treatment of the piecewise-constant ε(x).

• Gaps opening is the main goal to be achieved when creating
a photonic crystal. After initial failures, photonic crystals have been
created for which both numerics and experiments confirm existence of
spectral gaps (see [80, 84, 145]). One has to be careful with such
evidence, though, since numerics needs to be done carefully to avoid
miscalculations of the spectra (which had occurred initially). Secondly,
both numerics and experiments have a hard time distinguishing be-
tween true gaps and so called pseudo-gaps, where the spectrum is very
“thin” (i.e., the density of states is very low). So, analytic studies are
fully warranted.

It is much harder to guarantee analytically existence of gaps in the
photonic rather than the solid state case. Here is the reason. We have
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described before the idea of using periodically repeated local perturba-
tions to the potential in a Schrödinger operator for gap opening. As
we indicated there, the main effect used was the possibility of low-
ering the bottom of the spectrum by perturbing the potential. This
mechanism is absent in the Maxwell case. Indeed, the operator is non-
negative, and so its spectrum is contained in the positive half-axis.
On the other hand, constants satisfy the equation (19) with λ = 0
and thus provide generalized eigenfunctions guaranteeing that zero is
in the spectrum. So, the spectrum of the Maxwell operator M al-
ways starts from zero. We see, in particular, that gaps do not open
at the bottom of the spectrum. On the other hand, analogously to the
Bethe-Sommerfeld statement, one expects that there are no gaps at
high frequencies. Therefore, gaps could possibly open in some middle
range of frequencies only, which makes this effect harder to achieve.

Here, however, the second technique comes to rescue: using high
contrast materials (i.e. the ones with high variations in the electric
permittivity function). The first truly analytic confirmation of the pos-
sibility of opening spectral gaps for some photonic crystals, as well as
analysis of those gaps, was obtained for 2D crystals [60]-[62]. In 2D,
the spectral problems (20)-(21) are scalar and much easier to study.
Existence of gaps was shown for PBG materials that consist of very
narrow graph-like strips of an optically dense dielectric (i.e., ε À 1)
separating large “air bubbles” with ε = 1. Similar analysis for the
full 3D model remains a challenge. The only exception is the paper
[63], where the magnetic properties were also involved and high con-
trasts in both ε and µ were required. It is not clear yet whether there
exist regimes (i.e. specific geometries of the material and choices of
the electric permittivity) where one can show analytically (rather than
numerically) existence of gaps for a truly 3D periodic dielectric (i.e.,
non-magnetic) medium.

An interesting activity was started in [41, 42] of optimizing gaps in
a PBG medium (see also [46] on optimization of impurities). Here one
starts with a medium with a gap and then uses non-smooth optimiza-
tion methods to change the geometry and dielectric function in order
to maximize the gap. There is also a version of the method, in which
gaps are forced to open at locations where they did not exist before.

• The number of gaps is believed to be finite, like in the Bethe–
Sommerfeld conjecture for the Schrödinger case, however no results are
known.

• Localized impurities added to a periodic ε are known not to
change the essential spectrum [55]-[59] and hence introduce only eigen-
values of finite multiplicity. In the same papers sufficient conditions are
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provided for the “strength” (i.e., size and dielectric constant) of a ho-
mogeneous impurity that would guarantee that an impurity eigenvalue
does arise at a prescribed location in the gap. The corresponding eigen-
functions decay exponentially with the rate dependent on the proximity
of the essential spectrum.

We will not address the popular activity in physics literature con-
cerning random perturbations to a photonic crystals and the corre-
sponding classical analog of Anderson localization, which in fact was
one of the initial reasons for pursuing photonic crystals (e.g., [81]-
[83]). There are also some initial analytic results in this direction
[17, 39, 55, 58].

The effects of introducing linear defects into a photonic crystal will
be addressed in the next section.

3. Waveguides

In this section we will survey very briefly some spectral problems
concerning waveguides that are of the nature similar to the ones dis-
cussed above. We will consider two types of waveguides, which we
will call “hard wall” and “soft” waveguides, meaning that in the first
case one has boundary conditions imposed that confine the wave to the
guide (e.g., electric field in a waveguide with metallic walls), while in
the second one the waves can leak into the exterior, where they are
forced to decay exponentially.

3.1. Periodic hard wall waveguides. In this section, by a waveg-
uide we will mean an elliptic problem in a cylindrical domain (possibly
with a multi-dimensional axis and with a variable cross-section). A
common example is a Helmholtz operator in cylindrical tube with ei-
ther Dirichlet, or Neumann conditions [117]. We call such waveguides
“hard wall,” since the wave is confined to the tube to start with.

Let Q ⊂ Rn be a smooth domain in

Rn = Rn1 ⊕ Rn2(22)

The points of Q are denoted by (t, x) corresponding to the decom-
position (22). It is assumed that for each t the cross-section Qt =
{x| (t, x) ∈ Q} is bounded and periodic with respect to t. We consider
a regularly elliptic spectral boundary value problem in Q:

{ L(t, x, Dt, Dx)u(t, x) = λu(t, x) in Q
Bj(t, x,Dt, Dx)u|∂Q = 0, j = 1, ...,m

(23)

where 2m is the order of the elliptic operator L, the boundary operators
Bj are of orders mj ≤ 2m− 1, and the coefficients of L and Bj, as well
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as the domain Q, are periodic in t. Such problems arise as models of
periodic electromagnetic and optical waveguides.

A simple example is of a Schrödinger operator L = −∆t,x + g(t, x)
in a cylinder along the t-axis, with Dirichlet or Neumann conditions,
where the potential g is t-periodic.

The general Floquet theory is applicable to such elliptic (as well as
parabolic) problems (see Section 5.4 in [97]). One can ask questions
similar to the ones discussed before for such waveguides. For instance,
one is interested in the absolute continuity of the spectrum. Until re-
cently, there had been barely any progress in this direction, besides a
couple of simple old results ([45] and Theorem 5.4.9 in [97]). How-
ever, the recent advances in general studies of the absolute continuity
problem (see the discussion above in this text) have led to the signifi-
cant progress in this area as well. Namely, various results on absolute
continuity for hard wall waveguides were obtained in [149, 150, 155]
based on Thomas’ method, as well as a waveguide analog [70] of the
breakthrough paper [69].

3.2. Soft PBG waveguides. One of the main suggested appli-
cations of PBG materials (photonic crystals) is to guiding light. Here
is the idea. Assume that we would like to guide the light of certain
frequency ω. We also assume that we have a PBG material such that
this particular frequency falls into its spectral gap. Let us create a lin-
ear (straight or bent) defect in this bulk medium (for instance, putting
a different dielectric, or altering the material design in any other way
along the defect). One can now try to send a wave of the “prohibited”
frequency ω through the defect, where it might be able to propagate.
On the other hand, when leaking into the bulk, the wave would have
to decay exponentially fast (be evanescent), since there this frequency
is not allowed. This is an intensively discussed topic in photonics area
(e.g., [35, 54, 80, 84, 145]), due to suggested applications to optical
circuits. There are quite a few questions to answer here, though. First
of all, one wonders whether waves of prohibited frequencies do exist
inside the line defect. The second is to show that the wave is evanes-
cent into the bulk (i.e., it is essentially confined to the defect “guide”),
which is probably the simplest among the problems that arise. The
next question is whether the wave (if it does exist) might “stuck” in
the guide rather than propagating through, or be reflected back from
bends or junctions without sufficient transmission. There are also other
issues that we will not address, e.g. in what way one could trigger such
waves in the defect by coupling to an external source.
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Let us notice that one deals here with a “soft” waveguide, since
the waves are allowed to penetrate the bulk and gladly do so, although
they will be forced to decay fast there. Analysis of such waveguides
poses additional difficulties in comparison with the hard wall case.

There has been only a handful of mathematics publications devoted
to these problems [4, 108, 109]. In all of them a bulk medium is de-
scribed by a dielectric function ε(x), which is assumed to be either
periodic [4] or just bounded from below and above 1 ≤ ε(x) ≤ C < ∞
[108, 109]. In [4, 108] the scalar model (20) is considered, while in
[109] the full Maxwell system is treated. It is assumed that the spec-
trum of the bulk medium has a gap (α, β). A linear cylindrical strip
defect is considered, which is assumed to be filled with a homogeneous
dielectric. In [4] it is additionally assumed that the defect is aligned
with one of the periodicity axes. It was shown [4, 108, 109] that if the
spectrum of the medium with the defect contains a frequency inside
the bulk of the gap, then the associated generalized eigenfunctions are
evanescent into the bulk (i.e., in the directions transversal to the de-
fect). This is a rather simple result based on the known decay estimates
for the Green’s function in the gap [17, 40, 59]. It was also shown
in [108, 109] that if the defect strip is sufficiently wide and optically
dense, then there is spectrum of the medium in the gap of the bulk,
and this “guided wave” spectrum can be made to be as dense inside
the gap as needed.

Let us formulate the main result of [108] more precisely. One can
think that the whole space Rn is filled with a dielectric or acoustic mate-
rial with properties described by the functions ε0 and ρ0 (the physical
interpretation of these functions depends on whether one deals with
electromagnetic or acoustic case). In the case of periodic functions this
models a photonic or acoustic crystal.

The operator A0 is the self-adjoint realization of

− 1

ρ0(x)
∇ · 1

ε0(x)
∇

in L2(Rn, ρ0(x) dx) defined by means of its quadratic form∫
ε−1
0 |∇u|2dx(24)

with the domain H1(Rn).
We also consider a “defect” strip

Sl = {x = (x1, x
′) ∈ Rn |x ∈ R, x′ ∈ lΩ},

where Ω is the unit ball centered at the origin in Rn−1 (the ball can be
easily replaced by other bounded domains) and lΩ is the ball of radius
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l > 0. We can now introduce the perturbed medium, for which

ε(x) = { ε > 0 for x ∈ Sl

ε0(x) for x /∈ Sl
, ρ(x) = { ρ > 0 for x ∈ Sl

ρ0(x) for x /∈ Sl
.

Physically, a linear homogeneous defect Sl is introduced into the orig-
inal medium. The perturbed operator A corresponds to the modi-
fied medium. This operator is self-adjoint in the weighted L2-space
L2(Rn, ρ(x) dx).

Theorem 5. Let G = (α, β) be a non-empty finite gap in the spec-
trum of the “background medium” operator A0 (in particular, α > 0).
Assume that for some δ ∈ (0, β−α

2
) the following inequality is satisfied:

l4δ2ρ2ε2 > νd−1,(25)

where νd−1 > 0 is the lowest eigenvalue of the bi-harmonic operator ∆2

in Ω with Dirichlet boundary conditions.
Then any interval of length 2δ in the gap G contains at least one

point of the spectrum σ(A) of the perturbed operator.

This result has been extended to the full 3D Maxwell system in
[109].

Not much is known otherwise about the structure of the “guided
wave” spectrum in the gap (e.g., what part of the gap it fills). The next
question to ask is whether this spectrum can contain any eigenvalues.
If this does occur, then the corresponding waves are not propagating
through the guide, but rather stuck inside of it. The last possibility
is unlikely, at least in the case of a periodic bulk. The natural idea
of trying to model after the Thomas’ proof of absolute continuity of
the spectrum for a periodic Schrödinger operator meets with difficul-
ties. The main obstacle here is that in the case of soft waveguides
the fiber operators L(k) in the direct integral Floquet expansion are
defined on non-compact manifolds, and hence do not have purely dis-
crete spectra (which does not happen for hard wall waveguides, where
the Thomas’ approach works smoothly). One should also mention the
recent preprint [64], where absolute continuity is shown for Schrödinger
operators with potentials periodic in some directions and decaying in
others. One can also apply successfully the Thomas’ method in some
asymptotic cases of infinitely thin defects [68, 109]. Such defects can
be modeled by δ-type potentials supported on periodic curves, which
serve as another model of “soft” waveguides (e.g., [53] and references
therein).
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The next important question is of creating bent guides and junc-
tions that allow significant propagation of guided waves without much
of a reflection back. Physics studies have shown [35, 54, 80, 84, 145]
that special engineering of bends can lead to high transmission. This
problem is still waiting for analytic results and is being currently con-
sidered.

4. Quantum graphs

In this section we would like to mention a new kind of spectral
problems that have been emerging recently from a variety of sources
in chemistry, physics, engineering, and mathematics. The section is
necessarily very short and we do not plan to give much of specific
information. The reader can refer to the surveys [99, 101, 102] and
the journal issue [103] for more details and references.

4.1. What is a quantum graph? A quantum graph is a graph G
equipped with two additional structures that will be mentioned later.
It is assumed that all vertices have finite degrees (i.e., finite number of
edges incident to a vertex). While in combinatorics and graph theory
graphs are usually considered as combinatorial objects, we would like
to consider G as a one-dimensional variety. We will call G a metric
graph if its each edge e is identified with a segment of the real axis,
and hence some coordinate xe is introduced along the edge (we will dis-
regard the subscript in xe and call the coordinate x, which should not
lead to misunderstanding). This enables one to introduce standard no-
tions of analysis on G: metric, measure, integration, derivatives along
edges, and some standard function spaces like L2(G) (notice that func-
tions f(x) here take values at all points along the edges, rather than
at vertices only, as is common in graph theory). In particular, it is
possible to introduce differential operators on G (as opposed to the
usual difference operators customarily studied on graphs). While it is
easy to write differential expressions on a graph, to define a differential
operator one needs also to impose some boundary conditions at all ver-
tices. We will see examples of such operators and conditions below. So
far we can complete the definition of a quantum graph saying that it
is a metric graph equipped additionally with a self-adjoint differential
operator (Hamiltonian).

The operators of interest in the simplest cases are:
the second derivative along each edge

f(x) → −d2f

dx2
,(26)
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a more general Schrödinger operator

f(x) → −d2f

dx2
+ V (x)f(x),(27)

or a magnetic Schrödinger operator

f(x) →
(

1

i

d

dxj

− A(x)

)2

+ V (x)f(x).(28)

In order for the definition of the operators to be complete, one needs to
describe their domains. The natural conditions require that f belongs
to the Sobolev space H2 on each edge e. One also needs to impose
boundary value conditions at the vertices. It is possible to describe
all the vertex conditions that make these operators self-adjoint (see
[52, 90, 91] and references therein and also [101]). One standard type
of such “Kirchhoff” boundary conditions for operators 27 is

{
f(x) is continuous on Γ

at each vertex v one has
∑

{e| v∈e}
df
dxe

(v) = αvf(v) ,(29)

where the sum is taken over all edges e containing the vertex v, and
derivatives are taken in the directions away from the vertex. Here αv

are some fixed real numbers. The most common case is when αv = 0,
i.e. {

f(x) is continuous on Γ

at each vertex v one has
∑

{e| v∈e}
df
dxe

(v) = 0 .(30)

There are many other plausible vertex conditions [52, 90, 91, 101].
Higher order differential operators and pseudo-differential operators

on graphs arise as well [106, 127].
Historically, probably the first graph model of the type discussed

above was developed in chemistry (e.g., [144]), where it was used to
model π-electron orbitals in conjugated molecules.

4.2. Where do quantum graphs come from? Why is it inter-
esting to study quantum graphs? One of the leading reasons is studying
wave propagation in thin structures. Imagine that we have a medium
that is a thin neighborhood of a graph and are interested in propagation
of electromagnetic, acoustic, or electronic waves in this domain. This
propagation is usually governed by a differential equation (Schrödinger,
Helmholtz, Maxwell, etc.) with suitable boundary conditions. Exam-
ples come for instance from the mesoscopic physics and nanotech-
nology. Mesoscopic systems (e.g., [1, 6, 51, 76, 79, 121, 148]) are
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physical systems whose one, two, or all three dimensions are reduced to
a few nanometers. They hence look as surfaces, wires, or dots and are
called correspondingly quantum walls, quantum wires, and quan-
tum dots. Circuits of quantum wires, due to recent progress of micro-
electronics, are subjects of intensive studies. One can also consider thin
graph-like acoustic or optical structures [11, 60, 61, 62, 105, 106]. In-
terest in such systems comes from the area of photonic crystals. There
have also been studies of wave propagation through thin graph-like su-
perconducting media [3]. One can expect that wave transport through
thin graph-like media could be studied using some approximate models
on graphs (when the “thin” dimensions are ignored). This is exactly
what leads to quantum graphs.

There are quite a few other cases when one wants to use a graph
model. One can think, for instance, of thin acoustic, electromagnetic,
or quantum waveguides. Another option is to use graph models for
studying the features that depend upon multiple connectedness of the
material, for instance Aharonov-Bohm effect [8, 10]. One can also
address quantum graph models when the full scale ones are too complex
to be treated. Examples of this kind come from quantum chaos [16,
32, 93, 94, 95], Anderson localization [7], and scattering [2, 51, 73,
90, 91, 92, 114, 125, 126, 132].

Yet another source of such models is averaging in dynamical systems
in the presence of a slow motion in graph directions and a fast one across
the graph. Then averaging naturally leads to the models of the kind
described above [66, 67].

Quantum graph models also arise in the spectral theory of differ-
ential operators in singular domains [49, 50].

4.3. Justification of quantum graph models. One wonders
whether quantum graphs are justified as asymptotic models for wave
transport in thin structures. Here is a brief overview of the situation.

The graph models have been justified as approximations for super-
conducting networks in [112, 113],[138]-[143], [146].

The quantum graph models arising in the photonic crystal theory
were obtained and studied in [60]-[62], [105, 106]. One notices here
appearance of pseudo-differential Hamiltonians on graphs, as well as
differential operators of orders higher than 2.

Development of quantum graph models for quantum wires circuits
[51] still faces problems. It is not clear whether such models can be
developed. See the discussion of this issue and relevant references in
[99].



28 PETER KUCHMENT

4.4. Spectral properties of quantum graphs. Most of the prob-
lems leading to quantum graphs require one to study their spectra (i.e.,
the spectra of the corresponding Hamiltonians). The reader can refer
to surveys [99, 101, 102, 103] for more details and the bibliography
concerning such studies. We will just mention briefly one interesting
gap opening effect that has been discovered in the graph situation and
bears a potential for important applications. Imagine that each ver-
tex of a quantum graph is equipped with an additional graph structure
(same for all vertices). This can be done either by incorporation a fixed
graph into each vertex (kind of adding some internal structure to the
vertex), or by attaching an additional graph to each vertex “sideways”.
In both cases it has been argued that this process of incorporating geo-
metric scatterers into each vertex leads to gap opening at some specific
locations [9, 147, 101, 104]. This seems to be a much more control-
lable gap opening mechanism than the one due to periodicity.
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