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Asymptotics of Spectra of Neumann
Laplacians in Thin Domains

Peter Kuchment and Hongbiao Zeng

ABSTRACT. We discuss convergence of spectra of Neumann Laplace
operators on thin domains to spectra of appropriate differential op-
erators on graphs.

1. Introduction

In this paper we study the behaviour of the spectrum of the Neu-
mann Laplacian in a thin graph-like domain when the domain’s width
tends to zero, i.e. when the domain looks like a “fattened graph.”
Problems of this type arise naturally in many areas of physics and
mathematics, most notably in theoretical studies of problems of meso-
scopic physics, superconductivity, photonic crystals, and other areas.
In order not to overload this paper, we refer the reader to the sur-
vey [4] for further motivation, references, and related results. The
main observation is that generally speaking there usually is a differ-
ential (rather than difference) operator on the graph whose spectrum
provides the limit of the spectrum of the original Neumann Laplacian.
This statement is not precise, since first of all the limit depends on how
in particular domain shrinks to the graph, and secondly the resulting
operators might act on a bigger space than the natural L? space on the
graph. All these distinctions will be spelled out in the sections below.

The proofs are just outlined. The details are provided in the PhD
Thesis [15] of the second author and will be also given elsewhere [6].
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2. Formulation of the problem

Let M be a finite graph smoothly imbedded into R? (as it will be
explained in the last section, all the results have natural analogs for
the case of periodic infinite graphs and corresponding periodic thin
domains). It is assumed that each edge is a finite C?*—curve and that
edges intersect transversally at the graph’s vertices. In some parts
of the paper we will assume that edges are straight (although this is
just a simplifying assumption and analogous results are most surely
true in a much more general situation). Graph M has finite sets of
vertices V = {v,l = 1,2, ...,d} and edges {M,}. The “fattened graph”
domain M* is the union of narrow strips (“pipes”) M; of width of
order € surrounding edges M; and of small neighborhoods U; of radius
of order % of vertices v;, where 1 > «a > 0. Here ¢ is a small parameter.
The detailed structure of the domain will be specified in the sections
below (see also Fig. 1).

FIGURE 1. Local structure of Me.

On each strip M we establish a local coordinate system (z;,y;) (or
just (z,y) when there is no possibility of confusion), where z; is the
arc length coordinate along the edge M; and y; is measured along the
normal directions to M;. One can naturally define the space L?(M)
consisting of functions defined along edges and square integrable along
each edge. Analogously, one can define the Sobolev space H'(M) that
consists of all functions that belong to H' on each edge and are contiu-
ous at each vertex. This allows one to define second order differential
operators on M, which will be extensively used in the following sub-
sections.
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The Neumann Laplace operator —A, in L? (M ¢)is defined in the
standard way by means of its quadratic form

eg[u,u]:/|Vu|2dA
M

with the domain H' (M¢). Here dA denotes the area element.

Our goal is to understand the behavior of the spectrum o (—A,) of
this operator when € — 0. The considerations of [1, 2] suggest that
this behavior probably depends on the value of a. Namely, one expects
to see three different cases: when 0 < @ < 1, @ = 3, and a > 1. These
correspond to the situations when the area of the vertex neighborhouds
dominates the area of the pipes, or both have the same order, or the
area of the pipes dominates. The case when o > % was studied in
[5, 11], and we describe the results of these papers below. The main

aim of this paper is to address the two other cases.

3. Statement of the results

In this section we will present the results and outline their proofs.
As it has already been mentioned, we will have to deal separately with
three distinct cases: % <a<l,0<a< %, and the borderline case
o= % In all these cases we will present a spectral problem in the space
L? on the graph or in some its extension, such that the eigenvalues of
the Neumann Laplacian —A, on the thin domain converge, when &
tends to zero, to the corresponding eigenvalues of the problem on the
graph. The proofs in all cases follow the same technique. Namely, let us
want to show convergence of the eigenvalues of —A, to the eigenvalues
of an operator A acting on a functional space on the graph and having
the quadratic form ef[u,u]. In view of the min—max representation
of the eigenvalues, it is sufficient to construct some “extension” and
“averaging” operators (). and P. such that (). extends functions from
the graph to the thin domain and P, acts in the opposite direction, and
such that both operators for small values of £ almost do not increase
the Rayleigh ratios of A and of —A, respectively, i.e.

e’ [Qeu, Qcu]
(Qeu, Qeu)

elu, ul

(u, )

< (1+0(1)) +0(1)

and

e[P.u, P.u]
(Pu, P.u)
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Since the min-max representation of the eigenvalues requires control
over the dimensions of subspaces, one also needs to guarantee that
these operators when ¢ is small have only the trivial kernel on the
eigenvalue subspaces of the corresponding problems. This usually fol-
lows immediately from the estimates provided in the lemmas below.

3.1. Small protrusions at the vertices: 1 < a < 1. We sum-
marize here some results of [8]-[11] and [5, 6, 14, 15]. Assume that
the tube along the edge M; has width £ p;(z), where p;(z) > 0isa C"!
function on the edge and z is the arc length coordinate. Notice that
the width function p can be discontinuous at the vertices. Each vertex
neighborhood is assumed to be contained in a ball of radius of order
~ &% and starshaped with respect to a smaller interior ball of a radius
of the same order of smallness.

Consider the Schrédinger operator H, in M*

HAQ) = (57 = A@)) +4(z),

where the scalar electric ¢(x) and vector magnetic A(x) potentials are
defined in a fixed neighborhood of M, ¢ is of the Lipschitz class, and
A belongs to C'. We impose Neumann conditions on OM®.

Let us also introduce the following operator H (A, q) on M:

1,d . d .

H(A,q)f(z;) = —5(% - zA;-(x))p(%j — 1A (2))f + af,
where we use ¢(z) to denote the restriction of the potential ¢ to M and
A7 is the tangential component of the field A to the edge M; of M.
The complete description of the operator requires us to impose some
boundary conditions at vertices. These are:

1. f is continuous through each vertex.
2. at each vertex v

af; ..,
> 5 (L -ia5) 0 -o
. Z;
{jlveM;}
Here p; denotes the function that provides the width of the tube along
M; (see the description of the domain above). The values p; (v) at the

same vertex can be different for different edges M; adjacent to v.

The next theorem summarizes some of the results of [8]-[11] and
5, 6, 14, 15]:

THEOREM 3.1. For anyn=1,2,...
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where \, is the n-th eigenvalue counted in increasing order (taking into
account multiplicities).

This theorem shows that the asymptotic behavior of the spectrum
of H.(A,q) when ¢ — 0 is given by the spectrum of the graph op-
erator H(A,q). The situation changes, however, when we allow the
vertex neighborhoods to decay slower, as the results of the following
subsections show.

3.2. Large protrusions at vertices: 0 < a < % In this and the
next subsection we will assume that all edges are segments of straight
lines and the strips are symmetric about the corresponding edges and
have width 2¢. The vertex neighborhoods U; are assumed to be disks in
R? centered at v; with radii €* and appropriately flattened where they
join the tubes (see Fig. 2). We will also restrict our considerations to
the Neumann Laplace operator only, albeit without any doubt similar
results should hold for more general Schrodinger operators of the type
considered in the previous section.

FiGURE 2. Local structure of M*® in the case of large protrusions.

We say that u € H' (M) belongs to Hj (M) if u vanishes at all graph
vertices. We denote by (u, a) elements of the Hilbert space L? (M )@ C?
(or Hy (M) @ C? ). Here d, as before, denotes the number of vertices,
and a = (ay, ..., aq). Let us define a quadratic form on the Hilbert space
L? (M) & C* by

(3.1) e[{u,a), (u,a)] = Z/ |u;-‘2dxj
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with the domain Hj @ C?. This form is closed and positive and hence
defines a positive self-adjoint operator A.

The domain D(A) can be easily described. In particular, for any
(u,a)y € D(A) we have u € H?(M;) for each edge M; and u satisfies ho-
mogeneous Dirichlet boundary conditions at all vertices. The operator
acts on such elements as

2
Alf (), = (=500) () €D () o €
j

In other words, the space C? of the “vertex states” belongs to Ker A,
while on each edge the operator acts as the second derivative with
Dirichlet boundary conditions. In particular, the spectrum of A is
immediately computable from the knowledge of the length of all edges.
Namely, let [; be the length of the edge M. Then the spectrum o(A) of
operator A consists of zero with multiplicity d (the number of vertices)
and of the collection of sequences (7n/l;)?, j = 1,2,.... So, as far as
the operator A is concerned, all vertices and edges are decoupled.

The spectra of both operators —A, and A are discrete. We denote
the eigenvalues counted in increasing order with their multiplicity by
A (—A;) and A, (A) respectively.

THEOREM 3.2. Let 0 < a < 3. Then
lim A, (—A:) = A\ (A)
e—0
foreachn=1,2, ...

The idea of the proof, as it was explained before, is based on the
variational principle and has been emloyed in similar situations before
[11, 14, 12, 5]. Namely, let T be one of the operators that we consider.
Then we can use the standard min-max formula for the eigenvalues:

A= inf  sup R (u)
n dim W=n u(#O)EW
Here
(Tu, u)
(u, )
is the Rayleigh quotient, )\, is the n-th eigenvalue (counted in non-

R(u) =

decreasing order) of the self-adjoint operator 7', and W is an n-dimensional

subspace of the domain of the quadratic form. Now one needs to be
able to transplant functions from H'(M¢®) to Hi(M) & C* and back
in such a way that the Rayleigh ratio does not increase much. Let us
introduce now the necessary “extension” Q° : H} (M) @ C¢ — H' (M?)
and “averaging” P¢: H' (M?) — H}(M) & C* mappings.
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Let 8 € (o, 2a). Suppose that vertex v; is an endpoint of edge M;
and its local coordinate along M, is a;. Let B; and D; be the disks
centered at v; with radii €? and ¢#/2 respectively. When ¢ is small
enough, D; C By C U;. We introduce the points

- B 2
aje=0a;+e"\/1—r;

ai.=a;+e*/1—g22

2,
where 7; are constants such that the segments of lines z; = aj, that
belong to Bf are disjoint for different values of j. Points bj, b3, are
analogously intorduced at the other end of the edge M;.
Let h be the piecewise linear function on [a;,bj | that is defined

and

as ;
rief —¢
h(zs) = re + ——— (2 — a1)
2,5 — 1
on [aj,,a? ], defined analogously on [b7_,b; ], and is identically equal
to € on [a2,, % ].

J,€7 7)€
Then we define for z; € [a},,b},] the normal average of a function

j,e7 Vge
u on M as
h(z;)
(@) u (25,9;5) dy;-
—h(z;)
Let B be the unit disk in R?® centered at the origin. Consider a
function w € C§° (B) of unit average. One can translate and homoth-

etically shrink w to produce functions w;. € C§° (D) of unit average.
We define now the weighted average

() ! /
clvy) = —— | weu
: area of Df Le

Dy

Nju (z;) =

We denote by v; : [aZ_,b5.] — [a;,b;] the 1-to-1 linear mapping
between these two segments. A cut-off function p will also be used,
such that
p(z) € C°(R), p(0) = 1, p(z) = 0 when |z| > 0.5 min |b;, — a;
] )

3

We are ready to define the “averaging” and ”extension” mappings
P? and Q°:

DEFINITION 3.3. Given u € H! (M?), we define
Py = (Pu,a),
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where
Nju — Nju (a;,g) p(z—al,)

Pu={ -Nu(®.)p(z-b,),

0, ifx e [aj, a},g} U [b;,sa bj}

if z € [a],,0]]

and a = (a1, ag, ...aq), where each a; is defined as

c(v;) y/area of Uf
a; = :
: V2e

DEFINITION 3.4. Let (u,a) € H} (M) @& C* and M; be an edge
of the graph M with the endpoints v; and vg. We define a function
Q* (u,a) on M*® as follows:

if (z,y) € U},

1/2—a
(3:2) Q° (ua) = ——,
l
if (z,y) € U* (u),
1/2—a
(33) Q° (u,a) = ———*,
k
and if (z,y) € M7,
i 81/2—aal 81/2_aak
(34) Q <U, a) = p ,O(iUJ - a‘},s) + Tp(xj - bjl',s) tuo wj'

Here z; is, as before, the arc length coordinate along the edge M;, and

\/Area of Uy

V2eer

Formulas (3.2) and (3.3) mean that in a vicinity of any vertex v,
the value of Q° (u,a) is defined as a constant determined by the [-th
component of a. The third term in (3.4) is obtained as follows: we
shrink u on each edge to a little bit shorter segment, then we extend it
to a function which is defined on M; and independent on the normal
variable. However, this extension would not fit continuously with the
constant values (3.2) on the common boundary of U; and M5. In order
to correct this, the two additional terms are added in (3.4) to adjust
the values of Q° (u, a) close to the vertices.

For these two operators, the following properties hold (see [6, 15]):

c =

LEMMA 3.5. 1. For any sufficiently small e > 0, the operator Q¢ is
continuous from Hi (M) @& C¢ to H' (M?) and P¢ is continuous from
H' (M#) to HY(M) & C*.
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2. For any sufficiently small € > 0 and for any (u,a) € H} (M) &
C4, the following inequalities hold:
(3.5) 1Q° (u, @I 72(asey > 26 (1+ O (7)) [{w, )| 2 anyece

and
(3.6)

e [QE <U” CL> aQE <U, CL)] S 2e (1 + O (57)) € [<U” CL) ’ <U” CL)] + 0 (67) ||<U,, GJ)”%?(M)@(Cd] ’

where v > 0 is a constant independent of u and ¢.
3. For any sufficiently small € > 0 and for all u € H* (M?)

(3.7)
13 3 1
e [Pu, PPul < o= [(14+ 0 (7)) [Vl + O ) lullF2are |
and
(3.8)
1

||P6“||i2(M)ea<cd 2 % [(1 +0 (7)) ||u||i2(M5) +0(") ||Vu||§,2(M5)} :
where v > 0 is a constant independent of u and ¢.

The lemma together with the min-max principle for eigenvalues leads
to the following Corollary.

COROLLARY 3.6. There is a constant v > 0 such that the following
inequalities hold for any n =1,2,3, ... :

(3.9) A (=A) <(14+0(E) A (A)+0(”) whene —0
(3.10) A (A) <\ (A +0(€7)
Theorem 3.2 now follows from Corollary 3.6.

3.3. The borderline case: o = % This time, we define the
following positive closed quadratic form on L? (M) & C%:

(3.11) €[(u,a),{u,a)] = Z/ |u;-|2dxj

with the domain D C H'! @ C? consisting of elements (u,a) € H' @ C?
such that a; = \/gu (v;) for each | =1, ...,d. This form defines a pos-

itive self-adjoint operator A. One can show by the direct calculations
that the operator acts on elements (f,a) € D (A) as

_ 2
A(f,a) = <—%,c>,xi € M;.
J
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where ¢ = (¢, ..., cq) € C? is defined by

2
cr = \E S fw) k=1,2..d
’UkeMl

The eigenvalue problem A (f,a) = A (f,a) can then be rewritten as

—LL = \f when z € M;
J
f is continous at each vertex vy, k=1,...,d .
> fi(vg) = 27 f (ve) at each vertex v, k=1,....d
’UkEMl

In this formulation of the spectral problem the extra variables a are
eliminated. So the spectral problem is rewritten on the graph alone,
at the expense of the spectral parameter now appearing also in the
boundary conditions.

As in the previous cases, the spectra of both positive operators —A,
and A are discrete.

THEOREM 3.7. The equality
e (=) = 2w (4)
holds for each n=1,2,....

The idea of the proof is similar to the one employed in the proofs of
the results of the two previous subsections. However, the construction
of the “extension” and “averaging” operators needs modification.

We will use the same linear function 1; and cut-off function p (z)
as in previous section.

Let 8 € (0.5,1) and v; be a vertex with the local coordinate a; along
the edge M;. Considers disks Bf and D; centered at v; with radii ¢# and
/2 correspondingly. For small values of €, we have D C Bf C Us.

Let
aj, =a;+e’\/1—r}

a?,szaj"' Ve —¢?,
where the numbers r; are chosen as in the previous subsection. The
points b;,b; ., and b7, are defined analogously at the other end of the
edge M;. With this choice of points a}, and a3, we define the function

h as before: it is equal to ¢ on [a?_, b3 ] and as

(xj - a},s)

and

ref —¢
1 2
Tje — Qje

h,(.I]) :Tl€ﬂ+
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on [ajg, ?5] and analogously on [b? e ]E] Then for z; € [ajs, ]E] we
define the normal average of u as
. h(z;)
Nju (z;) = 2 () / u (z5,Y;) dy;-
—h(z;)

In the following definition, we use the same notations as before: an
edge M, has the endpoints v; and vy.

DEFINITION 3.8. For any (u,a) € D, define Q° (u,a) on M¢ as
follows:
1f (l‘,y) - UlE’

(3.12) Q° (u,a) =u(v));
if (z,y) € Uf,
(3.13) Q° (u,a) = u (vg);
if (v,y) € M,
(3.14) Q° (u,a) (z,y) =uo;(z).
DEFINITION 3.9. Given u € H' (M*?), define
P*u = (Pu,a),

where a = (a1, as, ..., aq) € C?,

a = \/gc (W),

and Pu is defined as follows:
ifr e [aj, a}’s},

Pu=c(v);
if z € [b],b],
Pu = c(vg);
if ¢ € [af,, b} ,],

Pu = Nju+ (c(v) — Nju(a;,.)) p(z —aj,)

je
+ (e (vn) = Nyu (bj.)) p (2 = bj.)
The crucial step is now the following lemma:
LEMMA 3.10. 1. For any sufficiently small € > 0 the operator Q)¢
maps D into H* (M*?) and the operator P maps H' (M ¢) into D

2. For any sufficiently small ¢ > 0 and for any (u,a) € D, the
following inequalities hold:

1Q° (u, @l Zaqarey = 26 (1 + O () [, @) 22 anymce
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e[ (u,0), Q@ (u,0)] < 2 (1+ O (e)) e[, a) ; (u, a)]

> 0 s a constant independent of u and .

3. For any sufficiently small e > 0 and for allu € H* (M?)

and

1
e [Pfu, Pu] < 2% (1+0(7) ||VU||i2(Me)

€, 112 1

where 7y

This

> 0 s a constant independent of u and .

lemma together with the min-max representation of eigenval-

ues leads to

COROLLARY 3.11. The following inequalities hold for any n =

1,2,3, .

where y

A () < (140 () A\ (A), whene —0.
A (A) A (A +0(e7)

> ( is a constant.

Theorem 3.7 is now an immediate consequence of Corollary 3.11.

4. Concluding remarks

The decoupling of edges and vertices occuring when o < 0.5
can be understood easily. Namely, for small values of ¢ the
tubes are extremely narrow in comparison with the vertex
neighborhoods. This means that a particle entering along a
tube one of the vertex vicinities has a negligible chance to
get out. So, the vertex vicinity works as a “black hole” for
particles, which means that in the limit Dirichlet boundary
conditions are to be imposed. On the other hand, among the
eigenstates sitting inside the “black hole” only the ground state
survives in the limit.

As it has already been mentioned, one can consider graphs
that are periodic with respect to a lattice rather than finite.
The thin domains M€ are also considered to be periodic. Then
one is dealing with absolutely continuous rather than discrete
spectra. In this case one can use Floquet theory and impose
cyclic Floquet/Bloch conditions corresponding to a quasimo-
mentum (see the basic notions of the Floquet theory e.g., in
[3, 7]). For any fixed quasimomentum one deals with a finite
graph on the torus, while presence of a quasimomentum in
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the operator can be interpreted as electric and magnetic po-
tentials entering the picture. So, one can literally repeat the
proofs of the results of this situation and obtain convergence
of Bloch (Floquet) eigenvalues uniformly with respect to the
quasimomentum. This, according to Floquet theory, implies
convergence of spectra.

e It should be possible (and probably not hard) to carry over all
the results of this paper to graphs with smooth non-straight
edges, non-constant width tubes M3, and presence of electric
and magnetic potentials.

e A certain kind of resolvent convergence of the Neumann Lapla-
cian on a fattened graph domain to an operator on the graph
was shown in [12, 13] in the particular case when the graph
is a tree.

e Convergence of solutions of the heat equations in a fattened
graph domain with Neumann conditions to solutions of the
heat equation on the limit graph (in absence of potentials)
was shown in [1, 2].
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