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On guided waves in photonic crystal waveguides
Peter Kuchment and BengSeong Ong

ABSTRACT. The paper addresses the issue of existence of modes guided
by linear defects in photonic crystals. Such modes can be created in
spectral gaps of the bulk materials and are evanescent in the bulk.

1. Introduction

A photonic crystal (or a PBG material, where PBG stands for “photonic
band-gap”) is a periodic dielectric medium in which the frequency spectrum
of electromagnetic waves has a gap. In other words, monochromatic elec-
tromagnetic waves of certain frequencies do not exist in this medium. Due
to their high promise for applications, such materials have been intensively
studied since the idea was suggested in 1987 [23, 12] (see, e.g., the recent
books [11, 13, 19] and the survey of mathematical problems of this area
[16]). Engineering photonic crystalline waveguides is one of the important
suggested applications of PBG materials. The idea is that introducing a lin-
ear defect (a “waveguide”) into an otherwise periodic PBG material, one
can create waves through it at frequencies prohibited in the bulk. Numeri-
cal and experimental studies have shown that such superior quality guides
can be efficiently created (e.g., [11, 13, 17, 19]). There also exist natural
acoustic analogs of PBG materials and corresponding waveguides.

Analytic studies of such waveguides, however, are essentially absent,
even in the case of a straight waveguide. The first questions one can ask are
existence of modes at the frequencies in the band gap of the bulk material,
their essential confinement to the guide (i.e., their exponential decay into
the bulk), and structure of the arising spectrum in the gap (e.g., absence of
bound states, absolute continuity of the spectrum). In this article we address
some of these basic issues and derive simple initial results for the case of
a straight linear defect. These results in fact do not use the periodicity

1991 Mathematics Subject Classification. Primary 35P99, 35Q60; Secondary 35Q72,
78A48.

Key words and phrases. photonic crystal, waveguide, spectrum.
Work of both authors was partially supported by the NSF Grants DMS 0296150 and

9971674. Work of the first author was also supported by the NSF Grant DMS 0072248.

c©0000 (copyright holder)

1



2 PETER KUCHMENT AND BENGSEONG ONG

of the bulk PBG material. Although one can obtain analogous statements
for the case of full Maxwell equation, in this paper we only address the
scalar model. This covers in particular the cases of TE and TM polarized
electromagnetic waves in 2D photonic waveguides and waves in 2D and 3D
acoustic waveguides.

We now describe the mathematical model studied in this text. Let ε0(x)
and ρ0(x) be bounded positive measurable functions in Rd separated from
zero, i.e. 0 < c0 ≤ ε0(x), ρ0(x) ≤ c1 < ∞. It is usually assumed in the
photonic crystal theory that both functions are periodic with respect to a
lattice Γ⊂Rd , but this is not required for the basic results we obtain in this
text.

One can think that the whole space Rd is filled with a dielectric or
acoustic material with properties described by the functions ε0 and ρ0 (the
physical interpretation of these functions depends on whether one deals
with electromagnetic or acoustic case, but this will be of no importance
for our study). In the case of periodic functions this models a photonic or
acoustic crystal.

The operator A0 is the self-adjoint realization of

− 1
ρ0(x)

∇ · 1
ε0(x)

∇

in L2(Rd,ρ0(x)dx) defined by means of its quadratic form

(1)
Z

ε−1
0 |∇u|2dx

with the domain H1(Rd).
We will also consider a “defect” strip

Sl = {x = (x1,x′) ∈ Rd |x ∈ R, x′ ∈ lΩ},
where Ω is the unit ball centered at the origin in Rd−1 (the ball can be easily
replaced by other bounded domains) and lΩ is the ball of radius l > 0. We
can now introduce the perturbed medium, for which

ε(x) = { ε > 0 for x ∈ Sl
ε0(x) for x /∈ Sl

, ρ(x) = { ρ > 0 for x ∈ Sl
ρ0(x) for x /∈ Sl

.

Physically, a linear homogeneous defect Sl is introduced into the original
medium.

We define the perturbed operator A that corresponds to the modified
medium analogously to the background operator A0. This operator is self-
adjoint in the weighted L2-space L2(Rd,ρ(x)dx), which will from now on
be denoted L2,ρ.

Our goal is to show that for any gap (α,β) in the spectrum σ(A0) of the
unperturbed medium and under appropriate conditions on the parameters
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l,ρ, and ε of the line defect, spectrum of the perturbed medium arises in the
gap. One naturally wants to interpret this as existence of guided waves in the
“photonic waveguide” Sl , while this would require proving some additional
properties. These are first of all confinement of the wave to the guide (i.e.,
evanescence into the bulk), which is also proven below, and non-existence
of bound states (i.e., the fact that the wave is actually propagating along the
waveguide), which we have not been able to establish yet.

Our results complement the discussions of the preprint [1] by H. Am-
mari and F. Santosa, where spectral properties of the TM mode in a 2D
PBG waveguides were studied in a situation of a linear defect aligned with
a periodicity axis of an otherwise periodic medium (and hence Floquet the-
ory [15, 18] was applicable). In particular, exponential confinement of the
guided modes for this particular case was proven there. Some of the con-
structions presented here are similar to the ones used in [6]–[8] for localized
defects.

2. Formulation of the results

Our main results are the following theorems.

THEOREM 1. Let G = (α,β) be a non-empty finite gap in the spectrum
of the “background medium” operator A0 (in particular, α > 0). Assume
that for some δ ∈ (0, β−α

2 ) the following inequality is satisfied:

(2) l4δ2ρ2ε2 > νd−1,

where νd−1 > 0 is the lowest eigenvalue of the bi-harmonic operator ∆2 in
Ω with Dirichlet boundary conditions.

Then any interval of length 2δ in the gap G contains at least one point
of the spectrum σ(A) of the perturbed operator.

This theorem guarantees that when (2) is satisfied, defect modes in the
spectral gaps of the background medium exist, and the corresponding spec-
trum forms a δ-net in the gap. One is tempted to associate these modes
with the guided waves. In order to do so one needs first to establish their
confinement to the waveguide (i.e., their evanescent nature in the bulk of
the material) and secondly, that they do not correspond to discrete spectrum
(bound states). The first of these tasks is achieved in the next simple result,
while the second is much harder and still awaits its solution. Before formu-
lating the theorem, we remind the reader about existence of the so called
generalized eigenfunction expansions. In the case of the operators we con-
sider, for almost all points z ∈ R with respect to the spectral measure, such
a generalized eigenfunction u ∈ H1

loc of the operator A has the properties
(1+ |x|)−Nu(x) ∈ L2(Rd) and (1+ |x|)−N ∇u(x) ∈ L2(Rd) for some N > 0.
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The eigenvalue problem Au = zu is satisfied in the distributional sense. This
is a well known fact for elliptic operators with smooth coefficients [3], while
for operators of the type we study one can find the corresponding results in
[14]. We will use the polynomial boundedness condition in the following
form:

(3) ‖u‖L2(K+x) +‖∇u‖L2(K+x) ≤CK(1+ |x|)N

for any compact K and x ∈Rd . We summarize (3) as polynomial growth of
order N.

THEOREM 2. Let u be a polynomially bounded generalized eigenfunc-
tion of A that corresponds to a value z in a gap G of σ(A0), then it decays
exponentially away from the defect strip Sl .

The exact meaning of the exponential decay will be provided in the
reformulation of this theorem given in Theorem 3 of the next section.

3. Proofs of the results

We adopt the following notations: the norm and inner product in L2(Rd)
will be denoted by ‖ · ‖ and 〈·, ·〉 respectively, while those in the weighted
space L2(Rd; ρ(x)dx) will be denoted with the subscript ρ: ‖ · ‖ρ, 〈·, ·〉ρ.
Notice that the norms ‖ · ‖, ‖ · ‖ρ, and ‖ · ‖ρ0 are equivalent.

3.1. Proof of Theorem 1. Let (µ−δ,µ+δ) be a sub-interval of the gap
G. The idea of the proof is that under the conditions of the theorem one is
able to provide an approximate eigenfunction u(x) for the operator A, such
that ‖u‖ρ= 1 and

(4) ‖Au−µu‖2
ρ< δ2.

Finding such an approximate eigenfunction would imply immediately the
statement of the theorem. For functions u supported in the defect strip,
where ρ(x) = ρ, this is equivalent to finding a function u such that ‖u‖= 1
and

(5) ‖Au−µu‖2< δ2.

So, let us construct such a function.
Let a real valued function φ(x′)∈C∞

0 (Ω) have unit L2-norm and φl(x′) =
l(1−d)/2φ(x′/l). We will also need real valued functions ψ(x1) ∈ C∞

0 (R)
with a unit L2-norm and ψn(x1) = n−1/2ψ(x1/n) for n > 0. It is clear that
the functions φl,ψn still have unit norms in the corresponding spaces. In-
troducing k =

√
µρε, we consider the function
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(6) ul,n(x) = φl(x′)ψn(x1)eikx1,

which will be our try for an approximate eigenfunction.
Instead of estimating the left hand side of (5), we will estimate ‖ερ(Au−µu)‖2.

Taking into account that the function u is supported inside the defect, the
needed inequality (5) can be also rewritten as

(7) ‖∆u+µερu‖2< δ2ρ2ε2.

Let us calculate directly the left hand side of (7) for the function u in-
troduced above, understanding all norms as the norms in L2:

(8) ‖∆u+µερu‖2=‖(∆x′φl)ψn +φlψ′′n +2ikφlψ′n‖2

=‖(∆x′φl)ψn +φlψ′′n‖2 +4µρε ‖φlψ′n‖2 .

We used the definition of k and the condition that functions φ and ψ are real
valued.

Let γ > 0. Using the inequality

(a+b)2 ≤ (1+ γ)a2 +
(

1+
1
γ

)
b2

and normalization of the functions, we can estimate the last expression from
above to get the following upper bound for the expression in question:

(9)
‖∆u+µερu‖2≤ 1+γ

ld+3 ‖∆φ
(

x′
l

)
‖2

L2(lΩ)

+
1+ 1

γ
n5 ‖ψ′′

(x1
n

)‖2
L2(R) +4µρε

n3 ‖ψ′
(x1

n

)‖2
L2(R) .

By changing variables to (x1/n,x′/l), this expression reduces to

(10)
1+ γ

l4 ‖∆φ(x′)‖2
L2(Ω) +

1+ 1
γ

n4 ‖ψ′′(x1)‖2
L2(R) +

4µρε
n2 ‖ψ′(x1)‖2

L2(R) .

Since n can be chosen arbitrarily large (without changing the defect
strip), the last two terms can be made arbitrarily small (uniformly with re-
spect to k on any finite interval). Hence, one needs to control only the first
term by an appropriate choice of a test function φ. In other words, one is
interested in

νd−1 = inf ‖∆φ(x′)‖2
L2(Ω),

where the in f imum is taken over real functions in C∞
0 (Ω) of unit L2-norm.

This is then the lowest eigenvalue of the bi-harmonic operator ∆2 with
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Dirichlet boundary conditions in Ω. In particular, νd−1 > 0. Now, due
to arbitrariness of γ > 0 our condition boils down to

(11)
νd−1

l4 < δ2ρ2ε2

or

(12) l4δ2ρ2ε2 > νd−1,

which proves the statement of the theorem.

3.2. Proof of Theorem 2. Let G be a spectral gap of A0 and z∈ σ(A)∩
G. Let also u(y) be a polynomially growing generalized eigenfunction for
the operator A that corresponds to z (in the meaning explained in the intro-
duction). Let x = (x1,x′) ∈ Rd and χx(y) be the characteristic function of
the cube {y | |y j− x j| ≤ 1} centered at x.

We now give a more precise formulation of Theorem 2:

THEOREM 3. There exist positive constants C1 and C(z) such that

(13) ‖χxu‖ ≤C1 (1+ |x1|)N e−C(z)dist(x,Sl),

where N is the order of polynomial growth of u.

REMARK 4. One might be concerned with the fact that albeit the eigen-
function decays exponentially away from the defect strip, the factor in front
of the expression grows polynomially along the strip. However, for a gen-
eralized eigenfunction that grows polynomially one cannot expect anything
better. In the periodic situation, using Floquet-Bloch theory, one can guar-
antee absence of this growth (see the comments at the end of the paper).

Proof. Define the sesqui-linear form

Q[ϕ,w] :=< ∇ϕ,
1
ε0

∇w >−z < ϕ,w >ρ0

with the domain H1(Rd).
Let R(z) = (A0− z)−1 and ϕ := R(z)χxu. We use here that z is not in the

spectrum of A0. Note that ϕ ∈ D(A0).
Let p = max(2dist(x,Sl),1) and ξx(y) be a nonnegative smooth cutoff

function that depends on y1 only, is supported in (x1− (p+1),x1 +(p+1))
and such that it is equal to 1 on [x1− p,x1 + p]. We assume further that
ξx(y)≤ 1 and |∇ξx(y)|= |ξ′x(y1)| ≤C for some constant C and all x,y∈Rd .
For simplicity of notation, we drop the subscript x in ξ = ξx. Note that
ξu ∈ H1(Rd). Using w = ξu, one gets

Q[ϕ,ξu] =< A0ϕ,ξu >ρ0 −< zϕ,ξu >ρ0=< χxu,ξu >ρ0=‖χxu‖2
ρ0

.
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This means that our goal should be to estimate Q[ϕ,ξu] from above. On the
other hand, using the equality Au = zu, one gets

Q[ϕ,ξu] = 〈∇ϕ, 1
ε0

∇(ξu)〉−〈ϕ,ξzu〉ρ0

= 〈∇ϕ, 1
ε0

∇(ξu)〉−〈ϕ,ξAu〉ρ0 + 〈ϕ, ρ
ρ0

ξAu〉ρ0 −〈ϕ, ρ
ρ0

ξAu〉ρ0

Simple algebraic transformations and easily justifiable integration by parts
allow one to rewrite the last sum as

(14) 〈∇ϕ,ξε̃∇u〉+ 〈ϕ,ξρρ̃Au〉ρ0 + 〈∇ξ,
u
ε0

∇ϕ− ϕ
ε

∇u〉.

In these calculations we used the notations

ε̃(x) =
1

ε0(x)
− 1

ε(x)
, ρ̃(x) =

1
ρ0(x)

− 1
ρ(x)

.

Notice that both these functions are supported inside the strip Sl .
Our last task in proving the theorem is to estimate from above the terms

in (14). In order to do so, we need an auxiliary statement concerning the
exponential decay of the resolvent, which is a result of [2, 6]:

LEMMA 5. [2, 6] There exist a positive number mz that depends only
on the distance of the point z from the gap edges, such that for a positive
constant C the following estimates hold for the local L2(Rd)-norm of the
resolvent R(z):

(15) ‖χuR(z)χv‖≤Ce−mz|u−v|

‖χu∇R(z)χv‖≤Ce−mz|u−v|

for any u, v ∈ Rd . Here the norms in the left hand side are the operator
norms in L2(Rd).

We can now get the needed estimates. Let V = [x1− p− 1,x1 + p +
1]× lΩ. This is a compact domain that can be covered by the union of p
fixed size domains V j = [a j,a j +2]× lΩ and which contains the supports of
(ξε̃) and (ξρ̃). Also note that dist(x,V j)≥ dist(x,Sl). Now using the lemma
above and (3) we get

(16)
|〈∇ϕ,ξε̃∇u〉| ≤‖χV ∇ϕ‖‖ξε̃∇u‖≤C ‖∑

j
χV j∇R(z)χxu‖‖∑

j
χV j∇u‖

≤Cp2(|x1|+ p+1)2Ne−mzdist(x,Sl) ≤C(|x1|+1)2Ne−(mz−η)dist(x,Sl)

We used here that p = max(2dist(x,Sl),1). We also denoted by C different
constants.
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Analogously,
(17)
|〈ϕ,ξρρ̃Au〉ρ0| ≤C|z|∑

j
‖χV jϕ‖‖ξρ̃u‖≤C(1+ |x1|)2Ne−(mz−η)dist(x,Sl)

Let us move now to estimating the last term in (14). Denote by a > 0 a
number such that shifts of lΩ by vectors a j with j ∈ Zd−1 cover the whole
space Rd−1. We denote

Wj := ([x1− p−1,x1− p]∪ [x1 + p,x1 + p+1])× (lΩ+a j) .

Then Wj =W0+(0,a j). Notice that W =∪ jW j covers supp∇ξ and dist(x,Wj)≥
C1(p+ | j|)−C2.

We are now ready to estimate the last term of (14) from above. We pro-
ceed as before, using the lemma, the polynomial growth of u, and uniform
boundedness of ∇ξ.

(18)

|〈∇ξ, u
ε0

∇ϕ〉| ≤C ∑
j
‖χW ju‖‖χW j∇R(z)χxu‖

≤C ∑
j
(|x1|+ p+ | j|+1)2Ne−mzdist(x,W j)

≤C(|x1|+ p+1)2Ne−m1
z dist(x,Sl) ∑

j
(1+ | j|)2Ne−m2

z | j|

≤C(|x1|+1)2Ne−(m1
z−η)dist(x,Sl)

where m1
z and m2

z are positive constants.
The expression |〈∇ξ, ϕ

ε ∇u〉| is estimated analogously. Combining the
above estimates, we get

‖χxu‖2≤C ‖χxu‖2
ρ0

= Q[ϕ,ξu]≤Cη(1+ |x1|)2Ne−m1
z dist(x,Sl).

This finishes the proof of the theorem.

4. Remarks

In this section we present some comments concerning the results of this
paper and possible further developments.

(1) The sufficient conditions for existence of “guided” modes provided
in Theorem 1 are certainly not necessary. It would be interesting
to obtain similar results under weaker conditions on the guide.

The number νd−1 that enters the conditions can be estimated
numerically. For instance, when d = 2, one can easily write a
secular equation which gives an approximate value of ν1 of about
31.29.
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(2) Theorem 1 provides existence of a δ-net of the defect spectrum
inside the gap. One wonders how much of the gap the spectrum
occupies. When does it fill the whole gap? Can it have gaps on its
own? There seem to be no rigorous results available concerning
these questions.

(3) Results of [2] on improved Combes-Thomas resolvent estimates
show that the exponential decay constant mz, which clearly de-
pends on the distance of the point z from the spectrum, behaves as√

(z−α)(β− z).
(4) One is interested in eliminating the polynomially growing factor

in the exponential decay estimate (13). Its appearance is due to
polynomial growth of generalized eigenfunctions, which in gen-
eral might not be possible to get rid of.

In the case when the background medium (i.e., the functions
ρ0(x) and ε0(x)) is periodic with respect to a lattice Γ in Rd and
when the linear defect is directed along one of the lattice vec-
tors, one can apply Floquet-Bloch theory [15, 18] that shows that
one has generalized (Bloch) eigenfunctions with N = 0. Then one
obtains exponential decay estimates that do not change along the
waveguide.

(5) The results of the paper have their analogs for the full Maxwell
system. The authors intend to present those elsewhere.

(6) As it has already being mentioned, in order to have the full right to
call the discovered modes “guided”, one needs to show that they
do not correspond to point spectrum (i.e., to bound states). Here
the most treatable case should be of a periodic medium with a lin-
ear defect aligned along one of the lattice vectors. In this situation
one can apply the Floquet-Bloch theory with respect to the ax-
ial variable of the waveguide and hope to use standard techniques
applied in the case of Schrödinger operators with periodic poten-
tial (e.g., [4, 9, 15, 18]). This happens to be not an easy task.
Even in the case of “hard wall” periodic waveguides, when waves
are contained in a periodic waveguide by Dirichlet, Neumann, or
more general boundary conditions, this problem is non-trivial. Al-
though it has been considered for rather long time [5, 15], the first
real advances are very recent [10, 20, 21, 22]. The case of photonic
crystal waveguides is more complex, due to absence of complete
confinement of the waves, which decay exponentially into the bulk,
but do not vanish completely.

(7) The next issue is engineering bent waveguides in such a way that
there is no significant reflection back at bends. Physics analysis
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and experiments (e.g., [13, 11, 17, 19]) show that this is possible.
To the best of our knowledge, no rigorous analysis of this problem
is available yet.
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