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1. Contents of the talk
• What is a quantum graph?
• Origins of quantum graphs
• Some spectral features

2. Sources: V. Kostrykin and R. Schrader,
Kirchhoff’s rule for quantum wires, J. Phys.
A 32 (1999), 595-630.
T. Kottos and U. Smilansky, Quantum
Chaos on Graphs, Phys. Rev. Lett. 79
(1997), 4794.
T. Kottos and U. Smilansky, Quantum
Graphs: A simple model for Chaotic Scat-
tering, J. Phys. A: Math and General 36
(2003), 3501.
P. Kuchment, Graph models of wave prop-
agation in thin structures, Waves in Ran-
dom Media 12 (2002), no. 4, R1-R24.
Quantum Graphs and Application, a spe-
cial issue of Waves in Random Media, 14
(2004), no. 1 (and references therein)



Work done by S. Alexander, Y. Avishai,

J. Avron, G. Berkolaiko, R. Blümel, R. Carl-

son, W. Evans, P. Exner, M. Freidlin, L. Fried-

lander, J. Keating, V. Kostrykin, T. Kot-

tos, L. Kunyansky, S. Novikov, P. Ola, L. Paivar-

inta, B. Pavlov, J. Rubinstein, Y. Saito,

H. Schanz, M. Schatzman, R. Schrader,

P. Šeba, U. Smilansky, A. Sobolev, M. Solomyak,

A. Wentzell, B. Winn, H. Zeng, ...

Joint Summer Research Conference in the

Math. Sciences ”Quantum Graphs and Their

Applications”, Snowbird, UT, USA, June

18 – June 24, 2005. Organizers G. Berko-

laiko, R. Carlson, S. Fulling, P. Kuchment

http://www.math.tamu.edu/˜kuchment
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3. Spectral Graph Theory

Γ - graph, V - vertices, E - edges
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Functions f on V , Laplace operator:

f(v) → ∆f(v) = f(v)− 1

dv

∑

e=(v,w)∈E

f(w)

Spectral properties of ∆ are related to prop-
erties of Γ. Graph theory, algebra, num-
ber theory, spectral geometry, mathemati-
cal physics, Internet tomography
Books by N. Biggs, F. Chung, Y. Colin de
Verdière, D. Cvetkovic et al.



4. Metric and Quantum Graphs

Metric graph Γ (weighted graph): edges

e are assigned “lengths” le > 0 and identi-

fied with segments [0, le].

~

p p0 le

e

Coordinate x along edges, functions f(x),

measure, integration, L2(Γ), differentiation

d/dx. Sometimes a metric graph is embed-

ded into Rn with induced arc length coor-

dinates along the edges.



Quantum graph: a metric graph Γ equipped
with a self-adjoint differential (sometimes
pseudo-differential) operator

Example: Hf = −d2f

dx2
, or a more general

Schrödinger operator

H =
(
1

i

d

dx
−A(x)

)2
+ V (x).

Domain of definition: H2(e) on each edge
e and boundary conditions at vertices.

Matrix, higher order, and pseudo-differential
Hamiltonians also arise.

Example: singular Schrödinger operator
on the plane (a “leaky wire” ):

−∆u + αδΓu = λu.

Spectral/scattering properties are of in-
terest.

Generalizations: quantum buildings, mul-
tistructures.



5. Origin(s) of quantum graphs:

A. Approximations for waves propagat-

ing in thin structures:

(a) Chemistry: π-electron orbitals in organic

molecules with conjugated double bonds.

(b) Quantum wire circuits (with nanotech-

nology and quantum computers appli-

cations).

(c) Thin superconducting circuits.

(d) Thin waveguides (quantum, acoustic, elec-

tromagnetic, optical).

(e) Photonic crystals.

(f) Averaging in dynamical systems.



B. Simpler models of some complex

problems of math and science:

(a) Toy examples in quantum mechanics.

(b) Quantum chaos: conjectures concern-

ing quantum signatures of chaos.

(c) Anderson localization.

(d) Quantum transport in multiply connected

systems.

(e) Inverse problems.



Math set-up: Approximations for waves

propagating in thin graph-like media

• Neumann Laplacian −∆N,d on Ωd. What

is behavior of σ(−∆N,d) when d → 0? (EM

waveguides, superconducting structures)

• Similar question for the Dirichlet Lapla-

cian. (circuits of quantum wires)

• Same question for the Maxwell operator

M = ∇× 1
ε∇×. (photonic crystals)



6. Neumann Laplacian (Rubinstein & Schatz-

man, P.K. & Zeng) d×p(x) - width of nar-

row tubes (d → 0), areas around junctions

do not decay too slowly. Then

σ

((
1

i

d

dx
−A(x)

)2
+ V (x)f(x)

)

converges to the spectrum of the graph

operator

−1

p
(

d

dx
− iA τ

e (x))p(
d

dx
− iA τ

e (x))f + V f

with vertex conditions: f is continuous, at

each vertex v

∑

e∈Ev

pj (v)

(
dfj

dxj
− iA τ

j fj

)
(v) = 0.

For large junctions the graph decouples into

a collection of unrelated edges with Dirich-

let conditions at vertices.



7. Dirichlet Laplacian (Duclos, Exner, Šeba,

Post, ...)

Dirichlet Laplacian −∆D,d is more com-

plex. Spectrum goes to ∞ when d → 0.

Subtract the first transversal eigenvalue λ1.

The spectrum of −∆D,d− λ1 converges to

σ

(
− d2

dx2
− γ(x)2

4

)
,

where x is the arc length coordinate on Γ,

γ(x) - curvature of Γ. Confining elec-

trons by bending wires.

The case of graphs (or even a single vertex

or corner) has not been understood.



8. Maxwell operator. 2D Photonic crys-
tals lead to a pseudo-differential spectral
problem (Figotin& P.K., P.K. & Kunyan-
sky)

ΛΓu = λu,

where ΛΓ is the Dirichlet-to-Neumann op-
erator on a planar graph.

∆u = 0

∆u = 0

∆u = 0

1
)

φ

Equivalent to: −∆u = λδΓu

More general: −∆u = λδΓu + cu. Leaky
wires.



Some spectral features

1. Self-adjoint BC (Exner& Seba, Kostrykin&
Schrader, Pavlov et al., Novikov, P.K.)

H = −d2f
dx2 on Γ. Examples of s.-a. BC:

δ-type conditions

f is continuous and at each vertex v∑
e∈Ev

f ′e(v) = αvf(v)

δ′-type conditions

f ′e(v) is edge-independent and at each v∑
e∈Ev

fe(v) = αvf ′(v)

General self-adjoint vertex BC:

PvF (v) = 0, QvF ′(v) + LvF (v) = 0.

Here Pv is an orthogonal projector in Cdv,
Qv = I − Pv, and Lv is a s.-a. operator in
QvCdv.
Quadratic form:

∑
e

∫
e
|dfdx|2dx−∑

v
〈LvF (v), F (v)〉

Complex symplectic geometry



Alternative descriptions of vertex con-

ditions:

• (Kostrykin and Schrader)

AvF (v) + BvF ′(v) = 0,

where (Av, Bv) is of maximal rank and

AvB∗v is self-adjoint.

• (Harmer) Uv-unitary,

i(Uv − I)F (v) + (Uv + I)F ′(v) = 0

• (Kottos and Smilansky) A symmetric uni-

tary matrix σ = σv of size dv × dv that

provides a transformation between the

incoming and outgoing waves at the ver-

tex. Dirichlet condition case: σi,j =

−δi,j; Neumann: σi,j = −δi,j +
2

dv
; in

general energy dependent.



2. Relations between quantum and com-

binatorial graph spectra (S. Alexander,

...)

An example: δ-type conditions

f is continuous and at each vertex v∑
e∈Ev

f ′e(v) = 0,

Γ is regular (dv = d = const) and edge

lengths are all same (le = l = const. The

spectrum of H can be explicitly derived

from the spectrum of discrete Laplacian

∆. I.e., λ ∈ σ(H) iff g(λ) ∈ σ(∆) for an ex-

plicitly written transcendental function g,

which in simplest cases might look as fol-

lows:

g(λ) =

(
α
sin l

√
λ

l
√

λ
+ d cos

√
λ

)



3. Resonant gaps, due to small scatterers
throughout the medium (Avron, Exner,&
Last; Pavlov; Schenker& Aizenman, Fig-
otin& P.K., P.K., P.K. & Kunyansky)
Simplest models (work both in combinato-
rial and quantum cases):

(a) Graph decoration by “flowers”:

(b) Graph decoration by “spiders”:



UCLA antenna ground plane:

A SCISSOR (side-coupled integrated spaced

sequence of resonators):



4. Periodic graph structures While spectra

of periodic elliptic 2nd order PDEs are AC,

a periodic graph Γ can have point spectrum

due to topology.

Such “cycle states” are the only sources for

the point spectrum on periodic combinato-

rial and quantum graphs (with differential

Hamiltonians).

The spectrum of periodic “leaky wires” is

AC. However, it may exhibit extremely flat

bands with strongly localized leaky eigen-

functions and low group velocity (P.K. &

Kunyansky, 1999):





Suggested use for CROWs (coupled res-

onator optical waveguides, Yariv at al., 1999):


