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2D and 3D reconstructions in acousto-electric

tomography

Peter Kuchment and Leonid Kunyansky

Abstract

We propose and test stable algorithms for the reconstruction of the internal con-
ductivity of a biological object using acousto-electric measurements. Namely, the con-
ventional impedance tomography scheme is supplemented by scanning the object with
acoustic waves that slightly perturb the conductivity and cause the change in the elec-
tric potential measured on the boundary of the object. These perturbations of the
potential are then used as the data for the reconstruction of the conductivity. The
present method does not rely on ”perfectly focused” acoustic beams. Instead, more re-
alistic propagating spherical fronts are utilized, and then the measurements that would
correspond to perfect focusing are synthesized. In other words, we use synthetic fo-

cusing. Numerical experiments with simulated data show that our techniques produce
high quality images, both in 2D and 3D, and that they remain accurate in the presence
of high-level noise in the data. Local uniqueness and stability for the problem also
hold.

Introduction

Electrical Impedance Tomography (EIT) is a harmless and inexpensive imaging modality,
with important clinical and industrial applications. It aims to reconstruct the internal con-
ductivity of a body using boundary electric measurements (see, e.g., [5, 7, 9, 10]). It is well
known that, regretfully, it suffers from inherent low resolution and instability. To bypass
this difficulty, various versions of a new hybrid technique, sometimes called Acousto-Electric
Tomography (AET), have been introduced recently [4,8,18,31]. (See also [14] for a different
way to recover the conductivity using combination of ultrasound and EIT). AET utilizes
the electro-acoustic effect, i.e. occurrence of small changes in tissue conductivity as the re-
sult of applied acoustic pressure [22, 23]. Although the effect is small, it was shown in [31]
that it provides a signal that can be used for imaging the conductivity. It has been under-
stood [4,8,18] that if one could apply concentrated pressure at a given point inside the body
and then measure the resulting change in impedance measurements, the knowledge of the
perturbation point would have a stabilizing effect on the reconstruction in otherwise highly
unstable EIT. It has been proposed to use a tightly focused ultrasound beam as a source
of such point-like acoustic pressure [4]. However, since perfect focusing of acoustic waves is
hard to achieve in practice (see, e.g., [16]), an alternative synthetic focusing approach was
developed in [18]. Namely, the medium is perturbed by a series of more realistic propagating
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spherical acoustic fronts with centers lying outside of the object (other options, e.g. plane
waves or monochromatic spherical waves could also be used [18]). The resulting changes
in the values of electric potential on the boundary of the object are recorded. Then, the
data that would have been collected, if perfect focusing were possible, are synthesized math-
ematically. Such synthesis happens to be equivalent to the well established inversion in the
so called thermoacoustic tomography (see, e.g., the surveys [17, 28, 30]). The results of first
numerical experiments presented in [18] confirmed the feasibility of this approach.

In this article, we describe a stable and efficient local algorithm for the AET problem.
From the formulas we present one can easily infer the local uniqueness and stability of the
reconstruction. However, after this work was done, the authors have learned of the paper [8],
some results of which (Propositions 2.1, 2.2) imply uniqueness and Lipschitz stability in the
similar setting (see also [6] for the presentation of such a local result). We thus address these
issues only briefly here.

The presented algorithm involves two steps. First, it synthesizes the data corresponding
to perfectly focused ultrasound perturbations from the data obtained using more realistic
spherical waves. Here the known smallness of the acousto-electric effect [22,23,31] is crucial,
since it permits linearization with respect to the acoustic perturbation and thus makes
synthetic focusing possible. Second, the algorithm reconstructs the conductivity from the
data corresponding to perfectly focused perturbations. This second step, from measured
data to the conductivity, is non-linear. We develop a linearized algorithm, assuming that
the conductivity is close to a known one. The numerical examples that we provide show that
this approach works surprisingly well even when the initial guess is very distinct from the
correct conductivity. One can apply iterations for further improvements.

To the best of the authors’ knowledge, the first step of our method (synthetic focusing) has
not been discussed previously in works on AET, except for a brief description in our papers
[18, 20]. On the other hand, three different approaches to reconstruction using perfectly
focused beam (the second step of our algorithm) have been recently proposed [4, 8, 18, 20].
Let us thus indicate the differences with these recent works.

In [4], a single boundary current profile was used and the problem of reconstructing
the conductivity was reduced to a numerical solution of a (non-linear) PDE involving the
0-Laplacian. In [18, 20], by a rather crude approximation, we reduced the reconstruction
problem to solving a transport equation (a single current was used). Unfortunately, in the
case of noisy measurements the errors tend to propagate along characteristics, producing
unpleasant artifacts in the images, which can be reduced by iterations. There is also an
elliptic version of this procedure, which works better. In [8], two current profiles are used,
the problem is reduced to a minimization problem, which is then solved numerically. In the
present paper we also use two (in 3D two or three) currents and, on the second step, use
the same data as in [8]. Unlike [8], in our work the reconstruction problem is solved, under
the assumption that the conductivity is close to some initial guess, by a simple algorithm,
which even on the first step produces good images, improved further by iterations. The
algorithm essentially boils down to solving a Poisson equation. Numerical experiments show
high quality reconstructions, quite accurate even in the presence of very significant noise.
Reconstructions remain accurate when the true conductivity differs significantly from the
initial guess.

The rest of the paper is organized as follows: Section 1 contains the formulation of the
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problem. It also addresses the focusing issue. The next Section 2 describes the reconstruction
algorithm, stability of which is discussed in Section 3. Numerical implementation and results
of reconstruction from simulated data in 2D are described in Section 4. Sections 5 and 6 are
addressing the 3D case. Section 7 is devoted to final remarks and conclusions.

1 Formulation of the problem

Let σ(x) be the conductivity1 of the medium within a bounded region Ω. Then the propa-
gation of the electrical currents through Ω is governed by the divergence equation

∇ · σ(x)∇u(x) = 0, x ∈ Ω. (1)

where u(x) is the electric potential. Let us assume that σ−1 is compactly supported within
region Ω, and that σ(x) = 1 in the neighborhood of the boundary ∂Ω. We also assume that
the currents J = σ ∂

∂n
u(x) through the boundary are fixed and the values of potential u are

measured on the boundary ∂Ω.
The acoustic wave propagating through the object slightly perturbs the conductivity σ(x).

Following the observations made in [22,23], we assume that the perturbation is proportional
to the local value of the conductivity; thus, the perturbed conductivity σnew(x) equals to
σ(x) exp(η(x)) where |η(x)| � 1 and is compactly supported. Let unew(x) = u(x) + wη(x)
be the potential corresponding to the perturbed conductivity σnew(x) and wη(x) be the
perturbation thereof. Then, by linearizing the problem about the unperturbed solution
u(x), we find that wη(x) satisfies equation

∇ · σ(x)∇wη(x) = −σ(x)∇u(x) · ∇η(x) (2)

subject to the homogeneous Neumann boundary conditions. Since the values of u(x) and
unew(x) are measured on the boundary, the Dirichlet data for wη(x) are known. It will
be sufficient for our purposes to measure a certain functional of the boundary values of
wη(x). Let us fix a function I(z) defined on ∂Ω, and define the corresponding measurement
functional MI(η) as follows:

MI,J(η) :=

∫
∂Ω

wη(z)I(z)dz. (3)

Here the subscript J on the left reminds about the dependence of w on the current J .
The goal is to reconstruct σ(x) from measurements of MI,J(η) corresponding to a suffi-

ciently rich set of perturbations η(x) in (2).
The simplest case is when one can achieve perfect focusing, and thus ηy(x) ≈ Cδ(x− y),

where the point y scans through Ω. Then the reconstruction needs to be done from the
values

MI,J,δ(y) :=

∫
∂Ω

wηy ,J(z)I(z)dz.

1Assumptions about the conductivity that justify our considerations will be specified in Section 3.
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However, this assumption of perfect focusing is unrealistic [16]. More realistic are, for in-
stance, mono-chromatic planar or spherical waves, or short omnidirectional pulses. We
chose here point-like transducers that generate such omnidirectional pulses; the correspond-
ing acoustic pressure can be approximated as

ηt,z(x) := Wt,z(x) :=
∂

∂t

(
δ(t− |x− z|)

4πt

)
,

where z is the transducer location (outside Ω) and t is the radius of the produced spherical
front2.

The corresponding measurements then are

MI,J(t, z) :=

∫
∂Ω

wWt,z,J(z)I(z)dz. (4)

Due to the linear dependence of the measurements on the acoustic perturbation η, one can
try to do a “basis change” type of calculation, which would produce the “focused” data
MI,J,δ(y) from the more realistic “non-focused” measurements MI,J(t, z). In particular, as
it is explained in [18, 20], if one knows the data (4) for all t ∈ [0,∞] and z ∈ Σ (where Σ
is a closed curve (surface in 3D) surrounding Ω), then MI,J,δ(y) can be reconstructed by
methods of thermoacoustic tomography. In particular, if Σ is a sphere, circle, cylinder, or a
surface of a cube, explicit inversion formulas exist that can recover MI,J,δ(y) (see [17]). For
general closed surfaces, other efficient methods exist. This transformation is known to be
stable. In fact, as it will be explained below, in the version of synthetic focusing used here,
it is smoothing.

We thus assume that MI,J,δ(y) are known for all y ∈ Ω, (e.g. they are obtained by
synthetic focusing or by direct measurements.) For our purposes it will be sufficient to use
just two functions I1(z), I2(z) as both the current patterns and the weights in the functionals
(3). We thus measure or synthesize the following values:

Mi,j(y) :=

∫
∂Ω

wηy ,Ii(z)Ij(z)dz, i, j = 1, 2.

We now interpret this data in a different manner. Namely, let uj(x), j = 1, 2 be the
solutions of (1) corresponding to the boundary currents (i.e., Neumann data) Ij . Then

∇ · σ(x)∇wj,δy(x) = −σ(y)∇uj(y) · ∇δ(x− y). (5)

Since

Mi,j =

∫
∂Ω

wi(z)Ij(z)dz,

equation (5) and the divergence theorem lead to the formula:

Mi,j(x0) = σ(x0)∇ui(x0) · ∇uj(x0). (6)

Thus, for any interior point x ∈ Ω and any two current profiles Ij, j = 1, 2 on the
boundary, the values of the expressions (6) can be extracted from the measured data

Our goal now is to try to recover the conductivity from these values. The same problem
in 2D was addressed in [8], but our approach to reconstruction is different.

2Other “bases” of waves, e.g. radial mono-chromatic, or planar could also be used [18].
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2 Reconstructing the 2D conductivity from focused data

using two currents

We will assume here availability of the measurement data MI,J(x) for all x ∈ Ω, no matter
whether they were obtained by applying focused beams, or by synthetic focusing. We will
consider now the situation where the conductivity σ(x) is considered to be a (relatively)
small perturbation of a known benchmark conductivity σ0(x):

σ(x) = σ0(x)(1 + ερ(x)), (7)

where ε � 1 and ρ = 0 near the boundary of the domain. (Numerical experiments show
that our method yields quite accurate reconstructions even when the true conductivity differs
significantly from the initial guess σ0).

It will be also assumed that two distinct current patterns Ij, j = 1, 2 on the boundary
are fixed, and the two resulting potentials uj, j = 1, 2 with the benchmark conductivity σ0:

∇ · σ0(x)∇uj(x) = 0

corresponding to the two prescribed sets of boundary currents. These potentials can be
computed and are assumed to be known.

Correspondingly, the unknown true potentials wj(x) = uj(x)+εvj(x)+o(ε) for the actual
conductivity σ satisfy the equations

∇ · σ∇(uj + εvj) = 0

with the same boundary currents as uj.
According to the discussion in the previous section, using acoustic delta-perturbations

(real or synthesized), we can obtain for any point x in the domain Ω the boundary voltage
responses

M0

j,k(x) := σ0(x)∇uj(x) · ∇uk(x), (8)

which can be computed numerically using the background conductivity σ0, and

Mj,k(x) := σ(x)∇wj(x) · ∇wk(x) = M0

j,k + εgj,k + o(ε), (9)

which are obtained by boundary measurements. Now we can forget about the acoustic
modulation and concentrate on reconstructing ρ(x) (and thus σ(x)) from the known Mj,k(x),
or, neglecting higher order terms, from gj,k(x).

A straightforward calculation leads to the formulas

gj,k(x) = σ (∇uj · ∇vk +∇uk · ∇vj) + o(ε). (10)

We will drop the o(ε) terms in the following calculations. We introduce the new vector fields
Uj =

√
σ0∇uj and Wj =

√
σ∇(uj + εvj) = Uj + εVj, so that

∇ · √σ0Uj = 0

and
∇ · √σWj = 0.
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We would like to find Wj . The last equation can be re-written, taking into account that, up
to o(ε) terms,

√
σ ≈ √

σ0(1 +
1

2
ερ) and lnσ = ln σ0 + ερ, as follows:

∇ · √σ0(1 + ερ/2)(Uj + εVj) = 0

or

∇ · (Uj + εVj) +
1

2
(Uj + εVj) · ∇(ln σ + ερ) = 0.

By collecting the terms of the zero and first order in ε we obtain

∇ · Uj +
1

2
Uj · ∇ ln σ = 0

and

∇ · Vj +
1

2
Uj · ∇ρ+

1

2
Vj · ∇ ln σ = 0

or

∇ · Vj +
1

2
Vj · ∇ lnσ = −1

2
Uj · ∇ρ.

Equivalently

∇ · √σVj = −1

2

√
σUj · ∇ρ.

With this new notation, the measurements can be expressed (neglecting higher order terms)
as follows:

(Uj + εVj) · (Uk + εVk) = Mj,k = M0

j,k + εgj,k,

which leads to

Uj · Uk = M0

j,k,

Uj · Vk + Uk · Vj = gj,k.

In particular, we arrive to three independent equations for Vj:

U1 · V1 = g1,1/2

U2 · V2 = g2,2/2 (11)

U1 · V2 + U2 · V1 = g1,2.

These equations will be our starting point for deriving reconstruction algorithms, as well
as uniqueness and stability results.

We consider now the case when the benchmark conductivity (initial conductivity guess)
is constant: σ0(x) ≡ 1.

2.1 The constant benchmark conductivity σ0(x) = 1

We will choose the boundary currents uj(x) = xj in such a way that for the conductivity
σ0 = 1 they lead to the fields

Uj = ∇uj = ej , j = 1, 2,

where e1 = (1, 0), e2 = (0, 1) are the canonical basis vectors.
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As a result, we get ⎧⎨
⎩

2 ∂v1
∂x1

+ ρ = g1,1
2 ∂v2
∂x2

+ ρ = g2,2
∂v1
∂x2

+ ∂v2
∂x1

= g1,2

(12)

as well as the equations

Δvj = − ∂

∂xj

ρ, j = 1, 2. (13)

Differentiating the equations (12), we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2∂2v1
∂x2

1

+ ∂
∂x1

ρ = ∂
∂x1

g1,1

2 ∂2v1
∂x1∂x2

+ ∂
∂x2

ρ = ∂
∂x2

g1,1
2∂2v2

∂x2

2

+ ∂
∂x2

ρ = ∂
∂x2

g2,2

2 ∂2v2
∂x1∂x2

+ ∂
∂x1

ρ = ∂
∂x1

g2,2
∂2v1

∂x1∂x2

+ ∂2v2
∂x2

1

= ∂
∂x1

g1,2
∂2v1
∂x2

2

+ ∂2v2
∂x1∂x2

= ∂
∂x2

g1,2

(14)

Combining the 2nd, 3rd, and 5th equations in (14), we arrive to

0 =
∂

∂x2

g1,1 − 2
∂

∂x1

g1,2 − ∂

∂x2

g2,2 + 2Δv2.

Utilizing (13) with j = 2 and differentiating with respect to x2, we obtain

∂2

∂x2
2

ρ =
1

2

∂2

∂x2
2

(g1,1 − g2,2)− ∂2

∂x1∂x2

g1,2.

Similarly,
∂2

∂x2
1

ρ =
1

2

∂2

∂x2
1

(g2,2 − g1,1)− ∂2

∂x1∂x2

g1,2.

Adding the last two equalities, we obtain the Poisson type equation

Δρ =
1

2

(
∂2

∂x2
1

− ∂2

∂x2
2

)
(g2,2 − g1,1)− 2

∂2

∂x1∂x2

g1,2 (15)

for the unknown function ρ. Notice that all expressions in the right hand side are obtained
from the measured data and that by our assumption ρ satisfies the zero Dirichlet condition
at the boundary.

This reduction clearly allows for algorithmic reconstruction, as well as proving (under
appropriate smoothness assumptions on σ) local uniqueness and Lipschitz stability of recon-
struction (see Section 3).
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2.2 A parametrix solution for smooth benchmark conductivity
σ0(x)

We would like to present now a sometimes useful observation for the situation when bench-
mark conductivity σ0 is smooth, but not necessarily constant (e.g., a standard EIT recon-
struction would provide such an approximation). In this case, we will find a parametrix
solution, i.e. will determine σ(x) up to smoother terms.

As it has already been discussed, perturbation εvj of the potential uj satisfies the equation

∇ · σ0∇vj = −σ0∇uj · ∇ρ.

Since σ is smooth and non-vanishing, up to smoother terms we can write

Δvj ≈ −∇uj · ∇ρ

and
vj ≈ −(∇uj · ∇)(Δ−1ρ)

where Δ−1 is the inverse to the Dirichlet Laplacian in Ω. Again up to smoother terms, we
have

Uk · Vj =
√
σ∇uk ·

√
σ(ρ/2∇uj +∇vj)

= σρ/2∇uk · ∇uj + σ(∇uk · ∇)(∇uj · ∇)Δ−1ρ.

The latter expression is symmetric up to smoothing terms and equations (11) can be re-
written as

U1 · V1 = g1,1/2

U2 · V2 = g2,2/2

U1 · V2 = g1,2/2 + a smoother term

U2 · V1 = g1,2/2 + a smoother term.

Under such an approximation, assuming that currents ∇u1 and ∇u2 are not parallel, which
is known to be possible to achieve [2], one can recover εVj at each point x. Therefore, (more)
accurate solutions Wj = Uj + εVj can be found. We note that ∇ · √σWj = 0 and so

Wj · ∇ lnσ = −2∇ ·Wj.

On the other hand, since Wj =
√
σ∇(uj + εvj), we have

∇× Wj√
σ
= 0.

This can be re-written as
Wj ×∇ ln σ = −2∇×Wj

or
W⊥

j · ∇ lnσ = −2∇×Wj,
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where W⊥

j is the vector obtained from Wj by the counter-clockwise 90o rotation (i.e. W⊥

j ·
Wj = 0 and |W⊥

j | = |Wj|).
Since for each j = 1, 2 vectors Wj and W⊥

j form an orthogonal basis, one has

∇ lnσ = − 2

|Wj|2 (W
⊥

j (∇×Wj) +Wj(∇ ·Wj)),

and thus

Δ ln σ = − div
2

|Wj|2 (W
⊥

j (∇×Wj) +Wj(∇ ·Wj)).

We compute now ln σ by taking the average of the two values of j and then solving the
Poisson equation

Δ ln σ = − div
2∑

j=1

2

|Wj|2 (W
⊥

j (∇×Wj) +Wj(∇ ·Wj)).

It is interesting to note that this solution reduces to (15) when σ = 1, although (15)
holds exactly, not just up to smoother terms.

3 Uniqueness and stability

In this section we will assume that σ ∈ C1,α(Ω), and thus ρ belongs to this space as well
(recall that ρ also vanishes in a fixed neighborhood of ∂Ω).

The questions of uniqueness and stability in the situation close to ours have already been
addressed in [6, 8], so we will be brief here. Although considerations of [6, 8] were provided
in 2D, the conclusion in our situation works out the same way in 3D.

The standard elliptic regularity [15] implies

Proposition 1 [6, 8]

1. The data gi,j in (9) determine the conductivity σ = 1 + ρ uniquely.

2. The mappings ρ(x) 	→ {gi,j(x)} of the space C1,α
0

(V ), where V is a compact sub-domain
of Ω, are Fréchet differentiable.

This justifies our formal linearization near the benchmark conductivity σ0. Now, the calcula-
tions of the Section 2.1 provide explicit formulas for the Fréchet derivative of the proposition3.
In particular,

∂
∂x1

ρ = 1

2

∂
∂x1

(g2,2 − g1,1)− ∂
∂x2

g1,2,
∂

∂x2

ρ = 1

2

∂
∂x2

(g1,1 − g2,2)− ∂
∂x1

g1,2.
(16)

These formulas and vanishing of ρ near ∂Ω show that the norm of ρ in C1,α can be esti-
mated from above by such norms of the functions {g11, g12, g22}. In other words, the Fréchet
derivative of the mapping

ρ 	→ {g11, g12, g22} (17)

3In fact, these formulas easily imply the statement of the proposition in our particular case.
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(a) (b) (c)

Figure 1: Reconstruction in 2D from noiseless data (a) phantom (b) iteration #0 (c) iteration
#1

Figure 2: Horizontal central cross-section (accurate data): dashed line denotes the phantom,
gray line represents iteration # 0, thick black solid line represents iteration #1

is a semi-Fredholm operator with zero kernel. Then the standard implicit function type
argument shows (see, e.g., [21, Corollary 5.6, Ch. I]) that (17) is an immersion.

This proves local uniqueness and stability for the non-linear problem (analogous result
is obtained in 2D in [6]). The 3D case works the same way.

Moreover, since our algorithms start with inverting the Fréchet derivative, this reduces
near the constant conductivity the non-linear problem to the one with an identity plus a
contraction operator. This explains why the fixed point iterations in the following sections
converge so nicely.

4 Numerical examples in 2D

We will now illustrate the properties of our algorithm on several numerical examples in 2D.

As the first step, in order to simulate the measurements, one needs to have a very
precise forward solver. The reason is that, due to the smallness of the acousto-electric effect,
the AET data comes from minute perturbations of the boundary measurements. We thus
carefully simulate the direct problem by using a pseudospectral algorithm and by performing
computations on a fine mesh 512 × 512. We also would like to note that no linearization is
used in the forward simulations (which, in particular, eliminates the chance of committing
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(a) (b)

(c) (d)

Figure 3: Functionals Mi,j : (a) original M1,1 (b) M1,1 reconstructed from data contaminated
by 50% noise (c) original M1,2 (d) M1,2 reconstructed from data contaminated by 50% noise

an inverse crime).

(a) (b) (c)

Figure 4: Reconstruction from the data contaminated by a 50% noise (a) phantom (b)
iteration #0 (c) iteration #1

For simplicity, as the reconstruction domain we used the unit square [−1, 1] × [−1, 1].
Our phantom (i.e., simulated ln σ(x)) consists of several slightly smoothed characteristic
functions of circles, shown in Figure 1(a) and Figure 4(a). Smoothing guarantees that the
phantom is fully resolved on the fine grid during the forward computations, which helps
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Figure 5: Horizontal central cross-section (noisy data): dashed line denotes the phantom,
gray line represents iteration #0, thick black solid line represents iteration #1

to ensure its high accuracy (several correct decimal digits). The characteristic functions
comprising the phantom are weighted with weights 1 or -1, so that σ(x) varies between e
and e−1. Thus, the conductivity deviates far from the initial guess σ0 ≡ 1. Current I1 equals
1 and −1 on the right and left sides of square, respectively; it vanishes on the horizontal
sides. Current I2 coincides with I1 rotated 90 degrees counterclockwise.

The simulated sources of the propagating spherical acoustic fronts are centered on a
circle of the diameter slightly larger than the diagonal of the square domain. There were
256 simulated transducers uniformly distributed over the circle. Each transducer produced
257 spherical fronts of the radii ranging from 0 to the diameter of the circle. For each front
radius tl and center zm, the perturbed σ was modeled, the non-linear direct problem was
solved, and the values of the functionals MIj ,Ik(tl, zm), j, k = 1, 2 were computed. In the first
of our experiments, these accurate data were used as a starting point of the reconstruction.
In the second experiment, they were perturbed by a 50% (in the L2 norm) noise.

(a) (b) (c)

Figure 6: Reconstruction from noiseless data (a) phantom (b) iteration #0 (c) iteration #4

As explained in the previous sections, the first step of the reconstruction is synthetic fo-
cusing, i.e. finding the values Mj,k(x) from MIj ,Ik(t, z), j, k = 1, 2. This was done using the
2D exact filtration backprojection formula from [19] (although other options are also avail-
able). On a 129×129 grid this computation takes a few seconds. Since the formula is applied
to the data containing the derivative of the delta-function, the differentiation appearing in
the TAT inversion formula (e.g., [1,12,17,19]) is not needed, and the reconstruction instead
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of being slightly unstable, has a smoothing effect (this is why we obtain high quality images
with such high level of noise).

On the second step of the reconstruction, functions M0

j,k(x) are computed using the
knowledge of the benchmark conductivity σ0, and values of gj,k(x) are obtained by comparing
Mj,k(x) and M0

j,k(x). Then the first approximation to ρ (we will call it iteration #0) is
obtained by solving equation (15). The right hand side of this equation is computed by
finite differences, and then the Poisson equation in a square is solved by the decomposition
in 2D Fourier series. The computation is extremely fast due to the use of the FFT. More
importantly, since the differentiation of the data is followed by the application of the inverse
Laplacian, this step is completely stable (the corresponding pseudodifferential operator is of
order zero), and no noise amplification occurs.

(a) (b) (c)

Figure 7: 3D Reconstruction from noiseless data. First row: phantom (a) Oxy cross sec-
tion (b) Oxz cross section (c) Oyz cross section. Second row: iteration #0; Third row:
iteration #4

Finally, we attempt to improve the reconstruction by accepting the reconstructed σ as a
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new benchmark conductivity and by applying to the data the parametrix algorithm of the
previous section. We will call this computation iteration #1.

Figure 8: Diagonal cross-section (noiseless data): dashed line denotes the phantom, gray
line represents iteration # 0, thick black solid line represents iteration #4

Figure 1 demonstrates the result of such reconstruction from accurate data. Part (a) of
the Figure shows the phantom, parts (b) and (c) present the results of iterations #0 and #1,
on the same gray-level scale. The profiles of the central horizontal cross-sections of these
functions are shown in Figure 2. One can see that even the iteration #0 produces quite
good a reconstruction; iteration #1 removes some of the artifacts, and improves the shape
of circular inclusions.

Figures 3, 4 and 5 present the results of the reconstruction from noisy data. In his
simulation we used the phantom from the previous example, and we added to the data 50%
(in L2 norm) noise. The first step of the reconstruction (synthetic focusing) is illustrated by
Figure 3. Parts (a) and (c) of this Figure show accurate values of the functionals M1,1(x) and
M1,2(x). Parts (b) and (d) present the reconstructed values of these functionals obtained by
synthetic focusing. One can see the effect of smoothing mentioned earlier in this section: the
level of noise in the reconstructions is much lower than the level of noise in the simulated
measurements. The images reconstructed from Mi,j(x) on the second step are presented
in Figures 4 and 5 The meaning of the images is the same as of those in Figures 1 and 2.
The level of noise in these images is comparable to that in the reconstructed Mi,j’s. To
summarize, our method can reconstruct high quality images from the data contaminated by
a strong noise since the first step of the method is an application of a smoothing operator,
and the second step uses the parametrix.

Finally, Figure 6 shows reconstruction of a phantom containing objects with corners.
The phantom is shown in the part (a) of the figure, part (b) demonstrates iteration #0, and
part (c) presents the result of the iterative use of the parametrix method described in the
previous section (iteration #4 is shown).

5 Reconstruction in 3D

Let us now consider the reconstruction problem in 3D. The 3D case is very important
from the practical point of view, since propagation of electrical currents is essentially three-
dimensional. Indeed, unlike X-rays or high-frequency ultrasound, currents cannot be focused
to stay in a two-dimensional slice of the body. However, it looks like the 3D case has not been
addressed in the literature yet, due to some analytic difficulties arising in other approaches.
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In contrast, the present approach easily generalizes to 3D, and leads to a fast, efficient, and
robust reconstruction algorithm.

We will assume that three different currents Ij , j = 1, 2, 3 are used, and that the boundary
values of the corresponding potentials wj, j = 1, 2, 3 are measured on ∂Ω. Similarly to the
2D case presented in Section 1, by perturbing the medium with a perfectly focused acoustic
beam (no matter whether such measurements are real or synthesized) one can recover at
each point x within Ω the values of the functionals Mi,j(x), i, j = 1, 2, 3, where, as before,

Mi,j(x) = σ(x)∇wi(x) · ∇wj(x).

Our goal is to reconstruct conductivity σ(x) from Mi,j(x). As before, we will assume that
σ(x) is a perturbation of a known benchmark conductivity σ0(x), i.e. σ(x) = σ0(x)(1+ερ(x)),
and that the values of potentials wj(x) are the perturbations of known potentials uj(x)
corresponding to σ0(x) :

wj(x) = uj(x) + εvj(x) + o(ε).

Now functionals Mj,k(x) are related to the known unperturbed values M0

j,k(x) and measured
perturbations gj,k(x) by equations (9) and (8).

As it was done in Section 2, we introduce vector fields Uj =
√
σ0∇uj andWj =

√
σ∇(uj+

εvj) = Uj + εVj, and proceed to derive the following six equations:

U1 · V1 = g1,1/2

U2 · V2 = g2,2/2

U3 · V3 = g3,3/2

U1 · V2 + U2 · V1 = g1,2

U1 · V3 + U3 · V1 = g1,3

U2 · V3 + U3 · V2 = g2,3.

One can obtain a useful approximation to ρ(x) by assuming σ0 = 1, and by selecting
unperturbed currents so that the potentials uj(x) = xj . Then, by repeating derivations of
Section 2.1 one obtains the following three formulas⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(
∂2

∂x2

1

+ ∂2

∂x2

2

)
ρ = 1

2

(
∂2

∂x2
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− ∂2

∂x2

2

)
(g2,2 − g1,1)− 2 ∂2

∂x1∂x2

g1,2(
∂2

∂x2

1

+ ∂2

∂x2

3

)
ρ = 1

2

(
∂2

∂x2
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− ∂2

∂x2

3

)
(g3,3 − g1,1)− 2 ∂2

∂x1∂x3

g1,3(
∂2

∂x2

2

+ ∂2

∂x2

3

)
ρ = 1

2

(
∂2

∂x2

2

− ∂2

∂x2

3

)
(g3,3 − g2,2)− 2 ∂2

∂x2∂x3

g2,3

(18)

We notice that by using the first of the above equations one can compute an approximation
to ρ(x) by solving a set of 2D Poisson equations (one for each fixed value of x3), since
boundary values of ρ(x) are equal to 0. This leads to a slice-by-slice 3D reconstruction,
which is based only on values of g1,1, g2,2 and g1,2, and therefore can be done by using a
single pair of currents.

One can get better images by using all three currents and doing a fully 3D reconstruction.
Namely, summing the equations (18) yields the values of 2Δρ in the left hand side. Then
one can solve the 3D Poisson equation with the zero boundary conditions to recover the
conductivity.
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One can expect that, as in 2D, this approach would work well for σ(x) close to σ0 = 1.
However, as demonstrated by our numerical experiments presented in Section 6, the results
remain quite accurate when σ(x) varies significantly across Ω. Moreover, a simple fixed
point iteration based on the repeated use of formulas (18) exhibits a rapid convergence to
the correct image.

6 Numerical examples in 3D

In this section we present results of 3D reconstructions from simulated data. Unfortunately,
a complete modeling of the forward problem in 3D (i.e. computation of the perturbations
corresponding to the propagating acoustic spherical fronts) would require solution of O(n3)
3D divergence equations. This task is computationally too expensive. Therefore, unlike
in our 2D simulations, we resort to modeling the values of the functionals Mi,j(x) on a
257 × 257 × 257 Cartesian grid, using formulas (5). These values correspond to the data
that would be measured if perfectly focused, infinitely small perturbations were applied to
the conductivity. Thus, in this section we only test the second step of our reconstruction
techniques. However, as mentioned before, if the real data were available, the first step
(synthetic focusing) could be done by applying any of the several available stable versions
of thermoacoustic inversion, and the feasibility of this step was clearly demonstrated in the
2D sections of this paper, as well as in [18].

In our first simulation we used noiseless values of Mi,j(x) and reconstructed the conduc-
tivity on a 257 × 257 × 257 grid. The first row of Figure 7 shows three 2D cross-sections
of a 3D phantom. The result of approximate inversion (using three currents, as described
in Section 5) is presented in the second row of the figure. Finally, the last row shows the
result of iterative use of formulas (18), where ρ now represents the difference between the
previous and the updated approximations to the conductivity. The third row demonstrates
iteration #4. In addition, Figure 8 shows the trace along a diagonal cross section in Oxy
plane (that corresponds to the diagonals of images presented in the column (a) of Figure 7).

In our second 3D experiment we utilized the same phantom, but as a data used only a
subset of the values of Mi,j corresponding to a coarser 129×129×129 grid; the latter coarse
grid was also used to discretize the reconstructed conductivity. We also added to the data
a 10% (in L2 norm) noise. Figure 9 presents the cross-sections of a 3D phantom and the
reconstructions obtained using three currents, on the same gray-level scale. The meaning of
the subfigures is the same as of those in Figure 7. Finally, Figure 10 shows the trace along
the diagonal cross sections of the images in the Oxy plane.

In both these examples iteration #0 yields good qualitative reconstruction of the con-
ductivity in spite the fact that the latter varies from e−1 to e1, and thus differs strongly from
the benchmark guess σ0 = 1. The subsequent iterations demonstrate fast convergence to the
correct values of σ(x).

7 Final remarks and conclusions

We have shown that the proposed algorithm works stably and yields quality reconstructions
of the internal conductivity. It does not require physical focusing of ultrasound waves and
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(a) (b) (c)

Figure 9: 3D Reconstruction from noisy data on a coarser grid. First row: phantom (a) Oxy
cross section (b) Oxz cross section (c) Oyz cross section. Second row: iteration #0; Third
row: iteration #4

Figure 10: Diagonal cross-section of reconstructions obtained from noisy data on a coarser
gird: dashed line denotes the phantom, gray line represents iteration # 0, thick black solid
line represents iteration #4

17



replaces it with the synthetic focusing procedure, which can be implemented using one of the
known thermoacoustic imaging inversion methods (e.g., time reversal or inversion formulas).
Under appropriate smoothness conditions on the conductivity, our analysis leads to the proof
of local uniqueness and stability of the reconstruction. However, since this conclusion has
been already made in 2D in [6, 8], we only presented a sketch of the proof.

Some additional remarks:

1. Using the spherical waves of the type considered in this text (which approximate an
omnidirectional short spherical pulse from a point-like transducer) has the advantage
that the synthetic focusing is a smoothing operator, and thus the whole reconstruction
procedure is more stable with respect to errors than the one that starts with focused
data.

2. Reconstructions can be done with a single, two, or (in 3D) three currents. A single
current procedure was the one we used initially in 2D. It works, but requires solving a
transport equation for the conductivity. When such a procedure is used, errors arising
due to the noise and/or underresolved interfaces tend to propagate along the current
lines, thus reducing the quality of the reconstructed image. The two-current approach
in 2D is elliptic and thus does not propagate errors. The two-current slice-by-slice
reconstruction in 3D is also possible, but the use of three currents seem to produce
better results.

The results of this work were presented at the conferences “Integral Geometry and To-
mography”, Stockholm, Sweden, August 2008; “Mathematical Methods in Emerging Modal-
ities of Medical Imaging”, BIRS, Banff, Canada, October, 2009; “Inverse Transport Theory
and Tomography”, BIRS, Banff, May 2010; “Mathematics and Algorithms in Tomography”
Oberwolfach (April 2010), and “Inverse problems and applications”, MSRI, Berkeley, August
2010. The brief reports have appeared in [18, 20].
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