
A brief sketch of the main ODE theorems

Math 611, Fall 2017

1 Main notions

Definition 1 An ODE of order k:
an equation relating the values of one or more unknown functions of a single
variable t (we will call it “time”), their derivatives up to the order k, and the
independent variable itself:

Φ(t, x1, x2, ...xn, , x
′
1, x
′
2, ...x

′
n, x

′′
1, . . . , x

(k)
1 , x

(k)
2 , ..., x(k)n ) = 0. (1)

If more than one unknown function is involved, a system of such equations
is usually needed. A system can be the neatly written in a vector form so
that it looks like a single equation, e.g.

Φ(t,x,x′, ...,x(k)) = 0, (2)

where boldface font is used to denote vectors.

Example 2

1. x′(t)x(t)2 − 3t sin(x′′(t)) = 8 is an ODE (of what order? linear or
non-linear?)

2. x′(t) = −5x(t+ 7) is NOT an ODE!!

3. x2(t) = −x′(t) +
t∫
0

cos(x′(τ)) dτ is NOT an ODE.

Question. Oops!

• Why aren’t the latter two examples ODEs? If you read the definition, it
looks at the first glance like there is nothing wrong with these examples.
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• What was missing in the wording of the definition? How should it be
changed to make sure we exclude such cases?

• Do you know how the equations of the type shown in the last two
examples are called?

2 Classification

• ODE vs PDE

• Order

• Linear vs non-linear

3 Order reduction

Introducing new unknown functions, an ODE or a system (2) can be reduced
to a first order system:

Φ(t,x1,x2, ...,xk,x
′
k) = 0

x1
′ = x2

...
xk−1

′ = xk

, (3)

so now we can always deal with the first order systems

Φ(t,x,x′) = 0 (4)

Definition 3

• The Normal Form is the best one:

x′ = F(t,x). (5)

• Autonomous
x′ = F(x). (6)

and non-autonomous (5) equations.
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4 Reduction of a non-autonomous equation

to an autonomous one:

introduce a new time τ and consider the autonomous system{
x′(τ) = F(t(τ),x(τ))

t′(τ) = 1
. (7)

See that this autonomous system is equivalent to the non-autonomous (5).
Here and further we will assume that x(t) is a differentiable function of

t ∈ (a, b) with values in Rn and F is a function from Rn+1 to Rn. (Complex
case is possible, but we will not consider it here.)

5 What evolutionary (i.e., depending on time

t) process can be described by ODEs?

Let us a have a process (mechanical, biological, etc.) whose instantaneous
state can be described by some parameters x. We call the space of these
parameters the phase space. Since the system evolves with time, the pa-
rameters become functions of time as well: x(t). When can such a process
be described by an ordinary differential equation? Three conditions tell you
when this is the case:

• The system is finite dimensional, i.e. it can be described by finitely
many parameters x1, ..., xn. This is not the case, for instance, in fluid
dynamics, heat conduction, and quantum mechanics.

• Smoothness: the parameters change in a differentiable manner with
time.This is not the case with shock waves.

• The process is deterministic: the state of the system at certain mo-
ment determines the whole future behavior of the system.

Indeed, due to the first condition, we can describe the evolution of the system
by a finite dimensional vector function x(t). This function is differentiable,
as the second condition tells us. The third condition says that if we know
x(t) for some moment t, this determines all the future values of x(τ). In
particular, this determines the value of the derivative x′ at the moment t.
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Hence, x′(t) is determined by t and x(t). In mathematical notations we write
that x′(t) is a function of t and x(t): x′(t) = F(t,x(t)), which is an ODE (a
system of ODEs).

6 IVP (Initial Value Problems)){
dx
dt

= F(t,x)

x(t0) = x0

(8)

Definition 4 For a differentiable function F : Rm → Rn the differential
DF (y) of F at a point y is the linear mapping from Rm to Rn with the
matrix

{DF}ij(y) =
∂Fi

∂xj
(y). (9)

For a vector x of small norm, DF (y)x is the linear approximation of the
change of the function F (y + x)− F (y). I.e.,

F (y + x) = F (y) +DF (y)x+ o(|x|)

(Taylor formula of first order, or linearisation formula)

Theorem 5 Existence and Uniqueness Theorem
Let Ω ⊂ Rn be an open domain, (a, b) be an open segment of the line Rt,
and F (t, x) and DxF (t, x) be continuous in (a, b) × Ω. Then, for any point
(t0, x0) ∈ (a, b) × Ω there exists a unique solution x(t) of the IVP (8)
defined in a neighborhood of t0.

Remark 6

1. No global (i.e., on the whole (a, b)) uniqueness is guaranteed. Why?

2. The proof will show that another condition on F instead of differentia-
bility suffices: it is enough that F is Lipschitz, i.e.

|F (t, x)− F (t, y)| ≤ K|x− y|

for some constant K and all (t, x), (t, y) in our domain. Is this condi-
tion weaker than the one in the theorem?
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7 Now about the proof: contraction map-

pings and such

7.1 Some notions and notations:

For a continuous function x : [a, b]→ Rn on a finite segment [a, b] we denote
by

‖x‖ = max
t∈[a,b]
{|x(t)|} (10)

its norm in the space of such continuous functions, where |x| is the Euclidean
norm of a vector in Rn.

Cr - class of r times continuously differentiable functions (applicable both
to scalar and vector valued functions of different numbers of variables, should
be understandable from the context).

Definition 7 A real valued function A(x) on R is a contraction, if it sat-
isfies the inequality

|A(x)− A(y)| ≤ K|x− y|
for some K < 1 and all real x and y.

Remark 8

1. Condition of continuous differentiability of A and estimate |A′(x)| ≤
k < 1 guarantee that A is a contraction.

2. The definition of a contraction can be naturally extended to any metric
space M with a metric (distance function) ρ instead of the real line,
replacing |A(x)− A(y)|, |x− y| above with ρ(A(x), A(y)), ρ(x, y).

7.2 A simple instant of the contraction mapping prin-
ciple:

Theorem 9 Let A(x) be a contraction on R. Then

1. The equation x = A(x) has a unique solution x∗ (called the fixed point
of A(x)).

2. This fixed point can be found as x∗ = lim
j→∞

xj, where x0 is arbitrary and

xi+1 = A(xi).
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Figure 1: Geometric representation of the iterations for solving the equation
x = A(x) with a contraction A(x).

7.3 The general contraction mapping principle:

Let X be a metric space: a set equipped with metric (= “distance”) ρ(x, y)
with properties ρ ≥ 0, ρ(x, y) = ρ(y, x), ρ(x, y) = 0 only if x = y, triangle
inequality is satisfied ρ(x, y) ≤ ρ(x, z) + ρ(y, z).

We also assume that X is a complete metric space, i.e. if a sequence
xn is such that ρ(xn, xm) →

n,m→∞
0, then there exists its limit x such that

ρ(xn, x)→ 0.
A mapping A : X 7→ X is a contraction if

ρ(A(x), A(y)) ≤ Kρ(x, y)

for some K < 1 and all x, y ∈ X.

Theorem 10 Let A(x) be a contraction on a complete metric space X. Then

1. The equation x = A(x) has a unique solution x∗ ∈ X (called the fixed
point of A(x)).

2. This fixed point can be found as x∗ = lim
j→∞

xj, where x0 ∈ X is arbitrary

and xi+1 = A(xi).
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7.4 An equivalent integral equation reformulation of
the IVP (8):

x(t) = x0 +

t∫
t0

F (τ, x(τ)) dτ. (11)

Lemma 11 Continuous solutions of (11) are exactly the continuously dif-
ferentiable solutions of (8).

Now the proof of Theorem 5 would be concluded if proved existence and
uniqueness of continuous solutions of (11) on a small segment around t0.

The metric space: consider the interval [t0 − d, t0 + d] ⊂ (a, b) with
a small d (it will be determined later on how small it should be). We also
consider a ball B = {x ∈ Rn | |x − x0| ≤ b} that is entirely contained in Ω.
Now define on the set X of all continuous functions x(t) from [t0 − d, t0 + d]
to B the max norm (10) as before and the corresponding metric ρ(x, y) =
‖x− y‖.

Define the following integral operator x→ A(x)

[A(x)](t) = x0 +

t∫
t0

F (τ, x(τ)) dτ. (12)

Note that this definition works for functions that map [t0 − d, t0 + d] to B.

Lemma 12 For a sufficiently small d, the operator A(x) maps the above
class of functions into itself and is a contraction, i.e.

‖A(x)− A(y)‖ ≤ k‖x− y‖ (13)

foe some k < 1.

Corollary 13

1. The integral equation (11) has a unique continuous solution in a neigh-
borhood of t0.
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2. This solution can be found as the limit in the norm (10) of Picard
iterations

yi+1(t) = x0 +

t∫
t0

F (τ, yi(τ)) dτ, (14)

where y0 can be chosen arbitrarily in such a way that y0(t0) = x0, e.g.
y0 ≡ x0.

3. The Uniqueness and Existence Theorem 5 is proven.

8 An existence theorem

Theorem 14 Peano’s existence theorem. Continuity of F alone guar-
antees local existence of a solution of the IVP (8).

Remark 15 1. In the proof of Peano’s theorem, solution is also found as
the limit of some sequence of functions, but rather than Picard’s iterations,
a sequence of Euler’s piecewise linear functions (recall the Euler’s method of
numerical solution) is constructed.
2. Example of the IVP problem

dx

dx
= 3x2/3, x(0) = 0

shows that conditions of Peano’s theorem cannot guarantee uniqueness.

9 Geometry of ODEs: vector fields

Consider the autonomous case

dx

dt
= F (x), x(t) ∈ Rn. (15)

We can think that F (x) assigns to each point x a vector F (x) (a vector
“grows” out of any point). Then we call F (x) a vector field. We will
consider at least continuous (or smoother) functions F (x) and corresponding
vector fields. If F is of some class Cr, we will also say that the field is of this
class.
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Lemma 16 Trajectories of solutions of (15) are exactly the curves that are
tangent at each point to the vector field corresponding to this equation. Such
curves are called phase curves of the field.

Note that vector fields are NOT defined for non-autonomous sys-
tems.

The field F (x) is said to be non-singular at a point x0, if F (x0) 6= 0.

Exercise 17 Show that the fields arising from turning a non-autonomous
system into an autonomous ones, are always non-singular at all points.

Example of a non-singular vector field: a constant vector field, where
F (x) is a constant non-zero vector.

Question 18 Is the existence and uniqueness theorem obvious for a constant
vector field?

A diffeomorphism of class Cr is a mapping G from a domain such that
it is one-to-one and both G and its inverse G−1 are of mappings class Cr. In
other words, a diffeomorphism smoothly deforms the domain. At each point x
the differential (DG)(x) is an invertible linear mapping of vectors in Rn. One
can act by diffeomorphisms on vector fields as well. One can come up with
a right definition using the following heuristics: let x(t) be a solution of the
equation defined by our vector field: x′ = F (x). We can act on this solution
by our diffeomorphism to get a new function xG(t) = G(x(t)). Then the
chain rule gives x′G = DG(x)x′ = DG(x)F (x) = DG(G−1(xG))F (G−1(xG)).
In other words, the G-modified function xG satisfies the ODE y′ = FG(y)
with a vector field FG(y) = DG(G−1(y))F (G−1(y)). This leads us to the

Definition 19 Let F (x) be a vector field and G be a diffeomorphism. Then
one defines a new vector field as follows: FG(x) = (DG)(G−1(x))F (G−1(x)).

Theorem 20 Vector Field Rectification Theorem. Any vector field of
class Cr in a neighborhood of any its non-singular point x0 can be reduced to
a constant field (“rectified”) by applying a diffeomorphism of class Cr.

One of the exercises is to show that the rectification theorem implies the
existence and uniqueness one.
Question: Can one do the converse, i.e. get an idea of local construction of
the rectifying diffeomorphism from known solution?

9



10 Dependence of solutions on parameters and

initial data.

The solution of the IVP (8) depends on the values of t0 and x0. How smooth
is this dependence? Another important question: Assume that the right
hand side (the vector field) also depends on some parameter(s) µ:

dx

dt
= F (t,x, µ), x(t0) = x0. (16)

How smoothly does the solution depend on the parameter? In fact, it can
be seen that dependence on the initial data reduces to dependence on pa-
rameters. Indeed, introducing new time variable τ = t− t0 and new spatial
variable y = x− x0, one reduces (8) to

dy

dτ
= F (τ + t0,y + x0), y(0) = 0. (17)

Now all variable parameters are in the right hand side rather than in the
initial data (which become constant). So, this is the only case to handle.

Theorem 21 Let the vector field F (x, µ) (where µ belongs to an open do-
main of a space Rm) be of class Cr. Let also F (x0, µ0) 6= 0. Then the
(unique) solution x(t, t0, x, x0, µ) of the IVP

dx

dt
= F (x, µ), x(t0) = x0 (18)

depends differentiably of class Cr on (t, t0, x, x0, µ) for sufficiently small |t−
t0|, |x− x0|, |µ− µ0|.

11 Extendability of local solutions.

Our theorems guaranteed existence of a local solution only with no guarantee
of how long it will survive. Simple examples show disappearance of solutions
into a singular point. Even without singular points, a solution curve can grow
fast and disappear in a finite time. An example is the IVP x′ = x2, x(0) = 1

that has the solution x =
1

1− t
that disappears at infinity when t approaches

1. Are there any other options? Answer: no.
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Theorem 22 Extendability Theorem. Let N be a compact (bounded
closed) subset in Ω (the domain where the smooth field is defined). Let also
F have no singular points in N . Then any local solution of (8) in (a, b)×Ω
can be extended forward (for t > t0) and backward (t < t0) either indefinitely,
or until it reaches the boundary of N .

12 Boundary value problems (BVPs)

• Here the conditions are imposed at both ends of a time interval, rather
than at one end only in the IVP case.

• Important applications.

• The number of conditions should still be correct (depending on the
order of system and number of unknown functions).

• No such nice existence and uniqueness theorem.
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