Additional problems, due Tuesday Nov. 18

1. Use the method of Riemann sums to compute

$$
\int_{1}^{2} x^{2} d x
$$

2. Use the method of Riemann sums to compute

$$
\int_{0}^{1} x^{3} d x
$$

3. Use the method of Riemann sums to compute

$$
\int_{0}^{1} e^{x} d x
$$

Hint 1. Use the following summation formula: for any value $r \neq 1$

$$
\sum_{k=1}^{n} r^{k}=\frac{r-r^{n+1}}{1-r}
$$

where you should have $r=e^{\frac{1}{n}}$.
Hint 2. Recall the definition of e as that base for which

$$
\lim _{n \rightarrow \infty} \frac{e^{\frac{1}{n}}-1}{\frac{1}{n}}=1
$$

