## M151B Practice Problems for Exam 1

Calculators will not be allowed on the exam. Unjustified answers will not receive credit.

1. Compute each of the following limits:

1 a .

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}
$$

1 b .

$$
\lim _{x \rightarrow 3^{-}} \frac{x}{x^{2}-2 x-3}
$$

1c.

$$
\lim _{x \rightarrow 0} \frac{\sin 7 x}{x}
$$

1d.

$$
\lim _{x \rightarrow 1} \frac{\sqrt{x^{2}+1}-\sqrt{x+1}}{x-1}
$$

1 e.

$$
\lim _{x \rightarrow-\infty} \frac{x^{3}-x^{2}+1}{1-x^{2}}
$$

1f.

$$
\lim _{x \rightarrow \infty}\left(e^{-x} \sin x\right)
$$

2. Find all points at which

$$
\frac{\ln (1-x)}{\ln (1+x)}
$$

is continuous.
3. Find a value for $c$ that makes the given function continuous at all points.

$$
f(x)= \begin{cases}x^{2}+1, & x \leq 1 \\ x-c, & x>1\end{cases}
$$

4. Prove that the equation

$$
e^{x}-2=\sin x
$$

has at least one real-valued solution.
5. Use the bisection method to approximate a root of

$$
x^{4}+x^{3}+x-1=0
$$

with a maximum error of $\frac{1}{3}$.
6. Use the definition of limits to prove the following statement:

$$
\lim _{x \rightarrow 2} 7 x-1=13
$$

7. Use the definition of limits to prove the following statement:

$$
\lim _{x \rightarrow 3}\left(x^{2}+1\right)=10
$$

8. Use the definition of derivative to compute the derivative of the following function at $x=0$.

$$
f(x)= \begin{cases}x^{2} \cos \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x=0\end{cases}
$$

9. Determine whether or not each of the following functions is differentiable at the point $x=0$. In each case, explain why or why not.

9a.

$$
f(x)= \begin{cases}x^{2}+1, & x \leq 0 \\ x^{2}-1, & x>0\end{cases}
$$

9b.

$$
f(x)= \begin{cases}x^{2}+1, & x \leq 0 \\ 2 x+1, & x>0\end{cases}
$$

9c.

$$
f(x)=x|x|
$$

10. Find an equation for the line that is tangent to the given curve at $x=1$.

$$
y=x^{3}+1
$$

Sketch a graph of the curve along with this tangent line.
11. Compute the derivative of each of the following functions:

11a.

$$
f(x)=x^{\frac{2}{3}}+x^{-7} .
$$

11b.

$$
f(x)=x \sin x
$$

11c.

$$
f(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}
$$

11d.

$$
f(x)=\left(2 x+\frac{1}{x}\right)^{2} .
$$



Figure 1: Figure for Problem 21.
12. Compute $f^{\prime \prime}(x)$ if

$$
f(x)=\sin \left(\sqrt{2^{x}}\right)
$$

13. Compute $\frac{d y}{d x}$ given that

$$
\sin (x y)=x .
$$

Find an equation for the line that is tangent to this curve at the point $\left(\frac{1}{\sqrt{2}}, \frac{\sqrt{2} \pi}{4}\right)$.
14. An airplane is flying 6 miles above the ground on a flight path that will take it directly over a radar tracking station. If the distance between the plane and tracking station is decreasing at a rate of 400 miles per hour when the distance is 10 miles, what is the speed of the plane?
15. Suppose that two sides of a triangle are 4 cm and 5 cm in length and that the angle between them is increasing at a rate of $.06 \mathrm{rad} / \mathrm{s}$. Find the rate at which the area of the triangle is increasing when the angle between the sides is $\frac{\pi}{3}$.
16. Use a logarithmic transformation to find a linear relationship between (appropriate transformations of) $x$ and $y$ if

$$
y=2 \times 7^{4 x} .
$$

17. Given the double-log plot in Figure 1, find a functional relationship between $x$ and $y$.

## Solutions

1a. Compute

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{x-2}=\lim _{x \rightarrow 2}(x+2)=4 .
$$

Notice in particular that we don't have to be able to evaluate the function at a point to compute its limit at that point.
1b. Compute

$$
\lim _{x \rightarrow 3^{-}} \frac{x}{x^{2}-2 x-3}=\lim _{x \rightarrow 3^{-}} \frac{x}{(x-3)(x+1)}=-\infty
$$

1c. We make the substitution $y=7 x$, and our limit becomes

$$
\lim _{y \rightarrow 0} \frac{\sin y}{(y / 7)}=7 \lim _{y \rightarrow 0} \frac{\sin y}{y}=7 .
$$

You won't lose points on a problem like this if you omit the explicit substitution.
1d. In this case, we rationalize the numerator,

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{\sqrt{x^{2}+1}-\sqrt{x+1}}{x-1} & =\lim _{x \rightarrow 1} \frac{\sqrt{x^{2}+1}-\sqrt{x+1}}{x-1} \cdot \frac{\sqrt{x^{2}+1}+\sqrt{x+1}}{\sqrt{x^{2}+1}+\sqrt{x+1}} \\
& =\lim _{x \rightarrow 1} \frac{x^{2}+1-(x+1)}{(x-1)\left(\sqrt{x^{2}+1}+\sqrt{x+1}\right)} \\
& =\lim _{x \rightarrow 1} \frac{x^{2}-x}{(x-1)\left(\sqrt{x^{2}+1}+\sqrt{x+1}\right)}=\lim _{x \rightarrow 1} \frac{x(x-1)}{(x-1)\left(\sqrt{x^{2}+1}+\sqrt{x+1}\right)} \\
& =\lim _{x \rightarrow 1} \frac{x}{\left(\sqrt{x^{2}+1}+\sqrt{x+1}\right)}=\frac{1}{2 \sqrt{2}} .
\end{aligned}
$$

1e. According to our rule from class, the following calculation is entirely fair:

$$
\lim _{x \rightarrow-\infty} \frac{x^{3}-x^{2}+1}{1-x^{2}}=\lim _{x \rightarrow-\infty} \frac{x^{3}}{-x^{2}}=\lim _{x \rightarrow-\infty}(-x)=+\infty
$$

1f. Since $\sin x$ does not have a limit as $x \rightarrow \infty$ we use the Squeeze Theorem (a.k.a. the Sandwich Theorem), observing

$$
-e^{-x} \leq e^{-x} \sin x \leq e^{-x}
$$

We have $\lim _{x \rightarrow \infty}\left(-e^{-x}\right)=\lim _{x \rightarrow \infty}\left(e^{-x}\right)=0$, so by the Squeeze Theorem

$$
\lim _{x \rightarrow \infty} e^{-x} \sin x=0
$$

2. First, observe that $\ln (1-x)$ is only defined for $x<1$ and $\ln (1+x)$ is only defined for $x>-1$, so our range is restricted to this interval. Also, we cannot divide by 0 , so we must have $x \neq 0$. We conclude that the points of continuity are

$$
(-1,0) \cup(0,1)
$$

3. We observe that the only point at which $f$ may not be continuous is $x=1$, and at this point $f(1)=2$. In order to make the function continuous at this point, we must ensure

$$
\lim _{x \rightarrow 1^{+}} x-c=2
$$

and this requires $c=-1$.
4. We begin by defining the function

$$
f(x)=e^{x}-2-\sin x,
$$

and we note that our goal will be to show that $f(x)$ has at least one real root. First, we observe that $f(0)=-1$. Next, we observe that since $e>2$ we know that $e^{2}>4$, so that $f(2)=e^{2}-2-\sin 2>0$. We can conclude from the Intermediate Value Theorem that there is a root on the interval $(0,2)$.

5 . We begin by defining the function

$$
f(x)=x^{4}+x^{3}+x-1
$$

and we observe that $f(0)=-1$ and $f(1)=2$, so that we are guaranteed a root in $(0,1)$. We take

$$
c_{1}=\frac{1}{2} \pm \frac{1}{2},
$$

and compute

$$
f\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^{4}+\left(\frac{1}{2}\right)^{3}+\frac{1}{2}-1=\frac{1}{16}+\frac{1}{8}+\frac{1}{2}-1=\frac{1+2+8-16}{16}=-\frac{5}{16}<0 .
$$

We conclude that the root is on the interval $\left(\frac{1}{2}, 1\right)$, and our second approximation becomes

$$
c_{2}=\frac{\frac{1}{2}+1}{2}=\frac{3}{4} \pm \frac{1}{4},
$$

and $\frac{1}{4}<\frac{1}{3}$, so this is a sufficient approximation. (Note. This equation has a second real root between -2 and -1 , so it's possible to approximate that one instead, which is fine.)
6. Our goal will be to show that

$$
|(7 x-1)-13|<\epsilon
$$

For linear functions we choose $\delta=\frac{\epsilon}{7}$. We now verify that this works by computing

$$
|(7 x-1)-13|=|7 x-14|=7|x-2|<7 \delta=7 \frac{\epsilon}{7}=\epsilon
$$

This completes the proof.
7. In this case we want to show

$$
0<|x-3|<\delta \Longrightarrow\left|\left(x^{2}+1\right)-10\right|<\epsilon
$$

As usual, we begin with $\left|\left(x^{2}+1\right)-10\right|$, and in this case we compute

$$
\left|\left(x^{2}+1\right)-10\right|=\left|x^{2}-9\right|=|(x+3)(x-3)|=|x+3||x-3| .
$$

As our first choice of $\delta$, we take $\delta=1$, so that

$$
2<x<4
$$

and we obtain the inequality $|x+3|<7$. (Note that in this case any positive value for $\delta$ works fine.) We now have

$$
|x+3||x-3|<7|x-3|<7 \delta
$$

and we take as our second choice of $\delta \delta=\frac{\epsilon}{7}$. Thus $\delta=\min \left\{1, \frac{\epsilon}{7}\right\}$. For Step 2, we compute

$$
\left|\left(x^{2}+1\right)-10\right|=|x+3||x-3| \stackrel{\text { first choice }}{<} 7|x-3|<7 \delta \stackrel{\text { second choice }}{\leq} \epsilon
$$

where as mentioned in class it's fine with me if the final inequality is written as equality since $\frac{\epsilon}{7}$ is generally smaller than 1 .
8. According to the definition,

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{h^{2} \cos \frac{1}{h}}{h}=\lim _{h \rightarrow 0} h \cos \frac{1}{h} .
$$

Observing now that $\left|\cos \frac{1}{h}\right| \leq 1$, we have

$$
-|h| \leq h \cos \frac{1}{h} \leq|h|
$$

and so by the squeeze theorem $f^{\prime}(0)=0$. Notice that with this definition of $f(x)$, we cannot compute the derivative at $x=0$ from our formulas. That is,

$$
f^{\prime}(x)=2 x \cos \frac{1}{x}-\sin \frac{1}{x}
$$

which is not defined at $x=0$ and has no limit as $x \rightarrow 0$. (This is a case in which $f(x)$ is differentiable at a point, but $f^{\prime}(x)$ is not continuous at that point.)
9a. We can see that $f(x)$ is not continuous at $x=0$ by computing

$$
\lim _{x \rightarrow 0^{-}} f(x)=1,
$$

and

$$
\lim _{x \rightarrow 0^{+}} f(x)=-1
$$

from which we conclude that the limit of $f(x)$ as $x \rightarrow 0$ does not exist. We know that if a function is not continuous at a point then it cannot be differentiable at that point, so $f(x)$ is not differentiable at $x=0$.
9b. Method 1. According to the definition of derivative,

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h} .
$$

Since $f$ is defined by different functions for $h<0$ and for $h>0$, we must compute and compare right and left limits:

$$
\lim _{h \rightarrow 0^{-}} \frac{\left(h^{2}+1\right)-1}{h}=\lim _{h \rightarrow 0^{-}} h=0
$$

while

$$
\lim _{h \rightarrow 0^{+}} \frac{(2 h+1)-1}{h}=\lim _{h \rightarrow 0^{+}} 2=2 .
$$

Since these limits do not agree, we can conclude that $f(x)$ is not differentiable at $x=0$.
Method 2. In cases for which

$$
f(x)= \begin{cases}f_{1}(x) & x \leq a \\ f_{2}(x) & x>a\end{cases}
$$

where $f_{1}(a)=f_{2}(a), f_{1}^{\prime}(a)=c_{1}$, and $f_{2}^{\prime}(a)=c_{2}$ we can proceed as follows: if $c_{1} \neq c_{2}$ then $f$ is not differentiable at $x=a$, while if $c_{1}=c_{2}$ then $f$ is differentiable at $x=a$ and $f^{\prime}(a)=c_{1}$. Here, $f_{1}(x)=x^{2}+1$ and $f_{2}(x)=2 x+1$, so $f^{\prime}(0)=0$ while $f_{2}^{\prime}(0)=2$. We can draw the same conclusion as we did with Method 1. (Be sure to check all assumptions when using this method; try it, for example, on (2a).)
9c. In this case,

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{h|h|}{h}=\lim _{h \rightarrow 0}|h|=0
$$

and so $f$ is differentiable at $x=0$ with $f^{\prime}(0)=0$.
10. The slope of the tangent line is given by the derivative $y^{\prime}(1)=3(1)^{2}=3$. We have, then $y-2=3(x-1)$.
11.

11a. Applying the power rule to each summand, we find

$$
\frac{d}{d x}\left(x^{\frac{2}{3}}+x^{-7}\right)=\frac{2}{3} x^{-\frac{1}{3}}-7 x^{-8} .
$$

11b. Applying the product rule, we find

$$
\frac{d}{d x} x \sin x=\sin x+x \cos x
$$

11c. Applying the quotient rule, we find

$$
\frac{d}{d x} \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}=\frac{\left(e^{x}+e^{-x}\right)\left(e^{x}+e^{-x}\right)-\left(e^{x}-e^{-x}\right)\left(e^{x}-e^{-x}\right)}{\left(e^{x}+e^{-x}\right)^{2}}
$$

and though considerable simplification is possible, this form is sufficient for the exam.

11d. Proceeding with the chain rule, we set $u=2 x+\frac{1}{x}$ and compute

$$
\frac{d}{d x} u^{2}=\frac{d}{d u} u^{2} \frac{d u}{d x}=2 u\left(2-\frac{1}{x^{2}}\right)=2\left(2 x+\frac{1}{x}\right)\left(2-\frac{1}{x^{2}}\right) .
$$

(This substitution does not need to be made explicitly.)
12. Method 1. Compute directly

$$
f^{\prime}(x)=\cos \left(\sqrt{2^{x}}\right) \frac{1}{2 \sqrt{2^{x}}} 2^{x} \ln 2=\frac{\ln 2}{2} \cos \left(\sqrt{2^{x}}\right) \sqrt{2^{x}}
$$

and

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{\ln 2}{2}\left(-\sin \left(\sqrt{2^{x}}\right) \frac{\ln 2}{2} 2^{x}+\cos \left(\sqrt{2^{x}}\right) \frac{\ln 2}{2} \sqrt{2^{x}}\right) \\
& =\left(\frac{\ln 2}{2}\right)^{2}\left(\sqrt{2^{x}} \cos \left(\sqrt{2^{x}}\right)-2^{x} \sin \left(\sqrt{2^{x}}\right) .\right.
\end{aligned}
$$

Method 2. First, observe that $\sqrt{2^{x}}=(\sqrt{2})^{x}$, which eliminates the need for a nested chain rule. Now,

$$
\frac{d}{d x} \sin \left((\sqrt{2})^{x}\right)=\cos \left((\sqrt{2})^{x}\right)(\sqrt{2})^{x} \ln \sqrt{2}
$$

and

$$
\begin{aligned}
\frac{d^{2}}{d x^{2}} \sin \left((\sqrt{2})^{x}\right) & =-\sin \left((\sqrt{2})^{x}\right)\left((\sqrt{2})^{x} \ln \sqrt{2}\right)^{2}+\cos \left((\sqrt{2})^{x}\right)\left((\sqrt{2})^{x} \ln \sqrt{2}\right) \ln \sqrt{2} \\
& =(\ln \sqrt{2})^{2}\left(\cos \left((\sqrt{2})^{x}\right)(\sqrt{2})^{x}-\sin \left((\sqrt{2})^{x}\right) 2^{x}\right)
\end{aligned}
$$

which is equivalent to the expression from Method 1.
13. We compute implicitly

$$
\frac{d}{d x} \sin (x y)=\frac{d}{d x} x \Rightarrow \cos (x y) \frac{d}{d x}(x y)=1 \Rightarrow \cos (x y)\left(y+x \frac{d y}{d x}\right)=1 .
$$

Solving for $\frac{d y}{d x}$, we find

$$
\frac{d y}{d x}=\frac{\frac{1}{\cos (x y)}-y}{x}
$$

At the point $\left(\frac{1}{\sqrt{2}}, \frac{\sqrt{2} \pi}{4}\right)$, we have

$$
\frac{d y}{d x}=\frac{\frac{1}{\cos \left(\frac{\pi}{4}\right)}-\frac{\sqrt{2} \pi}{4}}{\frac{1}{\sqrt{2}}}=2-\frac{\pi}{2}
$$

The equation for the tangent line is

$$
\left(y-\frac{\sqrt{2} \pi}{4}\right)=\left(2-\frac{\pi}{2}\right)\left(x-\frac{1}{\sqrt{2}}\right) .
$$

14. In this case, we are given that $\frac{d r}{d t}=-400$, where $r$ denotes the distance between the plane and the tracking station. If we let $x$ denote the horizontal distance between the plane and the tracking station, then what we are looking for is $\left|\frac{d x}{d t}\right|$, the plane's speed. In order to find a relation between $\frac{d x}{d t}$ and $\frac{d r}{d t}$, we begin by relating $x$ and $r$. We have

$$
x^{2}+36=r^{2}
$$

Upon differentiation of this equation with respect to $t$, we find

$$
2 x \frac{d x}{d t}=2 r \frac{d r}{d t} .
$$

When $r=10$, we have $x=\sqrt{100-36}=8$, and therefore

$$
2(8) \frac{d x}{d t}=2(10)(-400) \Rightarrow \frac{d x}{d t}=-\frac{8000}{16}=-500 .
$$

The negative sign indicates that the plane is moving toward the tracking station, but since the problem asks for speed, the correct answer is +500 .
15. First, observe that what we know is $\frac{d \theta}{d t}$ and what we would like to know is $\frac{d A}{d t}$, where $A$ is the area of the triangle and $\theta$ is the angle between the sides of lengths 4 and 5 . In order to get a relationship between $A$ and $\theta$, we recall that the area of a triangle is

$$
A=\frac{1}{2} b h,
$$

where $b$ is the length of the base of the triangle and $h$ is the height of the triangle. If we draw the triangle with the 5 cm side as the base (i.e., $b=5$ ) and let $h$ denote the triangle's height, then we immediately find the relation

$$
\sin \theta=\frac{h}{4} \Rightarrow h=4 \sin \theta
$$

We can now write the area as

$$
A=\frac{1}{2}(5) 4 \sin \theta=10 \sin \theta .
$$

In order to get a relationship between $\frac{d A}{d t}$ and $\frac{d \theta}{d t}$, we take the derivative of each side of this last expression with respect to $t$. We find

$$
\frac{d A}{d t}=10 \cos \theta \frac{d \theta}{d t}
$$

At $\theta=\frac{\pi}{3}\left(60^{\circ}\right)$, we have $\cos \left(\frac{\pi}{3}\right)=\frac{1}{2}$ and consequently

$$
\frac{d A}{d t}=10\left(\frac{1}{2}\right)(.06)=.3 \mathrm{~cm}^{2} / \mathrm{s}
$$

16. You can proceed by taking a logarithm of this equation to any base. Though 7 would be a reasonable base here, it is sufficiently uncommon that I'll use base 10. That is,

$$
\log _{10} y=\log _{10} 2 \times 7^{4 x} \Rightarrow \log _{10} y=\log _{10} 2+4 x \log _{10} 7
$$

The linear relationship is

$$
\log _{10} y=\left(4 \log _{10} 7\right) x+\log _{10} 2
$$

17. This is a semilog plot with $\log _{10} y$ on the vertical axis and $x$ on the horizontal. That is, the line has an equation of the form

$$
\log _{10} y=m x+b
$$

We can read directly from the plot that $b=-1$. Likewise, the slope is

$$
m=\frac{1-(-1)}{4}=\frac{1}{2}
$$

We have, then,

$$
\log _{10} y=\frac{1}{2} x-1
$$

In order to get a functional relationship, exponentiate each side with base 10,

$$
10^{\log _{10} y}=10^{\frac{1}{2} x-1} \Rightarrow y=10^{-1}\left(10^{\frac{1}{2}}\right)^{x}
$$

