
M151B Practice Problems for Final Exam

Calculators will not be allowed on the exam. Unjustified answers will not receive credit. On
the exam you will be given the following identities:

n
∑

k=1

k =
n(n + 1)

2
;

n
∑

k=1

k2 =
n(n + 1)(2n + 1)

6
;

n
∑

k=1

k3 =
(n(n + 1)

2

)2

.

1. Compute each of the following limits:

1a.
lim

x→2−

x

x2 + 3x − 10
.

1b.
lim
x→0

xesin( 1

x
).

1c.

lim
x→0

x sin x

(1 − ex)2
.

1d.
lim

x→∞
[(x + 1)1/3 − x1/3].

1e. The geometric mean of two positive real numbers a and b is defined as
√

ab. Show that

√
ab = lim

x→∞
(
a1/x + b1/x

2
)x.

2a. Find a value for c that makes the given function continuous at all points.

f(x) =

{

sinx
x

, x 6= 0

c, x = 0
.

2b. Determine whether or not your function from (2a) is differentiable at x = 0. If it is
differentiable at this point, compute its derivative there.

3. Find an equation for the line that is tangent to the graph of

f(x) =
xex

1 + x2

at the point x = 0.

4. Suppose the angle of elevation of the Sun is decreasing at a rate of .25 rad/hr. How fast
is the shadow cast by a 400 ft tall building increasing when the angle of elevation of the Sun
is π

6
?
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5. Suppose f(x) is continuous on the interval [a, b] and differentiable on the interval (a, b).
Show that if f ′(x) = x for all x ∈ (a, b), then there exists some value c ∈ (0, 1) so that

f(b) − f(a) = c(b − a).

6. Let
f(x) = x1/3(x + 3)2/3, −∞ < x < ∞.

6a. Locate the critical points of f and determine the intervals on which f is increasing and
the intervals on which f is decreasing.

6b. Locate the possible inflection points for f and determine the intervals on which f is
concave up and the intervals on which it is concave down.

6c. Evaluate f at the critical points and at the possible inflection points, and determine the
boundary behavior of f by computing limits as x → ±∞.

6d. Use your information from Parts a-c to sketch a graph of this function.

7. Find the side-lengths that maximize the area of an isosceles triangle with given perimeter
P = 10. (An isosceles triangle is a triangle with two sidelengths equal.)

8. Find all fixed points for the recursion equation

an+1 =
3

4
an +

1

an

.

Sketch a graph of the function f(a) = 3
4
a+ 1

a
, and use the method of cobwebbing to determine

whether or not one of these fixed points will be achieved from the starting value a0 = 1
2
.

9. Find all fixed points for the recursion equation

xt+1 = 1 +
2

xt

and determine whether or not each is asymptotically stable or unstable.

10. Suppose a function f(x) is continuous on the interval [0, 1] and that you are given the
following table of values:

x f(x)

1/8 1/2
3/8 1/3
5/8 −1
7/8 −2

Table 1: Values of f(x) for Problem 1.

Use an appropriate Riemann sum to approximate
∫ 1

0
f(x)dx.

11. Use the method of Riemann sums to evaluate
∫ 2

1

x + x2dx.
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12. Evaluate the following indefinite integrals.

12a.
∫

ex cos(ex)dx.

12b.
∫

x√
1 + x

dx

12b.
∫

cos−1 xdx.

13. Evaluate the following definite integrals.

13a.
∫ 3

1

x2

√
1 + x3

dx.

13b.
∫ π

4

0

x sec2 xdx.

14. Find the area of the region bounded by the graphs of y = x4 and y = 20 − x2.

15. Find the volume obtained when the region between the graphs of y = ex and y = e−x,
x ∈ [0, 2], is rotated about the x-axis.

16. Suppose the base of a certain solid is the region in the xy-plane between the line y = x
and the parabola y = x2. Find the volume of the solid created if every cross section is a
right isosceles triangle with hypotenuse in the xy-plane perpendicular to the x-axis.

Solutions

1a. We have
lim

x→2−

x

x2 + 3x − 10
= lim

x→2−

x

(x − 2)(x + 5)
= −∞,

where we have observed that x − 2 is negative for x to the left of 2.

1b. We apply the Squeeze Theorem in this case, using the inequality

−|x|e ≤ xesin( 1

x
) ≤ |x|e.

We have
lim
x→0

−|x|e = lim
x→0

|x|e = 0,

and so according to the Squeeze Theorem

lim
x→0

xesin( 1

x
) = 0.
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1c. We apply L’Hospital’s Rule twice,

lim
x→0

x sin x

(1 − ex)2
= lim

x→0

sin x + x cos x

2(1 − ex)(−ex)
= lim

x→0

sin x + x cos x

2e2x − 2ex

= lim
x→0

2 cosx − x sin x

4e2x − 2ex
= 1.

1d. This limit has the indeterminate form ∞ −∞, so the first thing we do is rearrange it
into an expression with the form 0

0
. We have

lim
x→∞

(x + 1)1/3 − x1/3 = lim
x→∞

x1/3[(1 +
1

x
)1/3 − 1]

= lim
x→∞

(1 + 1
x
)1/3 − 1

x−1/3
= lim

x→∞

1
3
(1 + 1

x
)−2/3(− 1

x2 )

−1
3
x−4/3

= lim
x→∞

(1 +
1

x
)−2/3 1

x2/3
= 0.

1e. We observe that this limit has the general form 1∞, and so we can apply L’Hospital’s
rule. We have

lim
x→∞

(
a1/x + b1/x

2
)x = lim

x→∞
eln(a1/x

+b1/x

2
)x

= lim
x→∞

ex ln(a1/x
+b1/x

2
)

= elimx→∞ x ln(a1/x
+b1/x

2
).

In order to compute this limit, we write

lim
x→∞

x ln(
a1/x + b1/x

2
) = lim

x→∞

ln(a1/x+b1/x

2
)

1
x

= lim
x→∞

2
a1/x+b1/x (1

2
a1/x(ln a)(− 1

x2 ) + 1
2
b1/x(ln b)(− 1

x2 ))

− 1
x2

= lim
x→∞

1

a1/x + b1/x
(a1/x ln a + b1/x ln b) =

1

2
(ln a + ln b),

where in this last step we have used that 1
x
→ 0 as x → ∞. The limit is

e
1

2
(ln a+ln b) = e

1

2
ln(ab) = eln(ab)1/2

=
√

ab.

2a. Since

lim
x→0

sin x

x
= 1,

we can make this function continuous at all points by choosing c = 1.

2b. Since the function is separately defined at x = 0, we must proceed from the definition
of differentiation. We compute

f ′(0) = lim
h→0

f(0 + h) − f(0)

h
= lim

h→0

sinh
h

− 1

h

= lim
h→0

sin h − h

h2
= lim

h→0

cos h − 1

2h
= lim

h→0

− sin h

2
= 0,
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where the last two steps both used L’Hospital’s rule. We conclude that this function is
differentiable at x = 0, and that f ′(0) = 0.

3. First,

f ′(x) =
(1 + x2)(ex + xex) − xex(2x)

(1 + x2)2
⇒ f ′(0) = 1,

which is the slope of the tangent line. Using f(0) = 0 and the general point-slope form
y − f(a) = f ′(a)(x − a), we conclude

y = x.

4. First, observe that what we know is dθ
dt

= −.25 rad/hr and what we want to know is dx
dt

,
where x is the length of the shadow (see the diagram).

We see that the relation between θ and x is

tan θ =
400

x
.

Upon taking a derivative of this equation with respect to t, we obtain

sec2 θ
dθ

dt
= −400

x2

dx

dt
,

where we can now fix θ = π
6
, so that sec2 θ = 1

cos2 π
6

= 1
3

4

= 4
3
, while x = 400

tan π
6

= 400
√

3.

Combining these observations, we have

dx

dt
= − x2

400

dθ

dt
sec2 π

6
= −3(400)(−.25)

4

3
= +400 ft/hr.

5. According to the Mean Value Theorem there exists some value c ∈ (a, b) so that

f(b) − f(a)

b − a
= f ′(c).

In this case f ′(c) = c, and so we conclude

f(b) − f(a)

b − a
= c ⇒ f(b) − f(a) = c(b − a).
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6a. The derivative of f(x) is

f ′(x) =
x + 1

x2/3(x + 3)1/3
,

from which we find the critical points x = −3,−1, 0. We see that f is increasing on
(−∞,−3] ∪ [−1,∞) and decreasing on [−3,−1].

6b. The second derivative of f(x) is

f ′′(x) = − 2

x5/3(x + 3)4/3
,

from which we find that the possible inflection points are x = 0,−3. We see that f is concave
up on (−∞,−3) ∪ (−3, 0) and concave down on (0,∞).

6c. Evaluating f at the critical points, possible inflection points, and at the endpoints, we
have:

f(−3) = 0

f(−1) = − 22/3

f(0) = 0

lim
x→−∞

x1/3(x + 3)2/3 = −∞

lim
x→∞

x1/3(x + 3)2/3 = + ∞.

6d. Your plot should look something like this:

7. Let y denote the length of the sides of equal length, and let x denote the length of the
side between them. Then the perimeter is

10 = 2y + x ⇒ y = 5 − 1

2
x.
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By the Pythagorean Theorem, the height of such a triangle is h =
√

y2 − 1
4
x2, and so the

area to be maximized is

A =
1

2
x

√

y2 − 1

4
x2 ⇒ A(x) =

1

2
x

√

(5 − 1

2
x)2 − 1

4
x2 =

1

2
x
√

25 − 5x, 0 ≤ x ≤ 5.

(The upper limit of 5 is clear both because a value of x larger than this would put a neg-
ative number under the radical, and because the single side cannot be more than half the
perimeter.) In order to maximize A(x), we compute

A′(x) =
25
2
− 15

4
x√

25 − 5x
.

The critical values are x = 10
3
, 5, where we observe that x = 5 is also a boundary value.

Checking A(x) at the critical and boundary values, we find

A(0) = 0

A(
10

3
) =

5

3

√

25

3
=

25

3
√

3

A(5) = 0.

We conclude that the maximum area is 25
3
√

3
and the side-lengths are x = 10

3
and y =

5 − 1
2
(10

3
) = 10

3
. That is, an equilateral triangle.

8. The fixed points solve

a =
3

4
a +

1

a
⇒ 1

4
a =

1

a
⇒ a2 = 4.

We conclude that the fixed points are ±2. In order to use cobwebbing, we must sketch a
graph of the function

f(a) =
3

4
a +

1

a
.

First, setting

f ′(a) =
3

4
− 1

a2
= 0,

we find that the critical points are a = ± 2√
3
, 0. The function is increasing on (−∞,− 2√

3
] ∪

[ 2√
3
,∞) and decreasing on [− 2√

3
, 2√

3
]. Next,

f ′′(a) =
2

a3
,

and so the only possible point of inflection is a = 0. The function is concave down on (−∞, 0)
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and concave up on (0,∞). Finally,

lim
a→−∞

(
3

4
a +

1

a
) = −∞

f(− 2√
3
) = −

√
3

lim
x→0−

(
3

4
a +

1

a
) = −∞

lim
x→0+

(
3

4
a +

1

a
) = + ∞

f(
2√
3
) =

√
3

lim
a→−∞

(
3

4
a +

1

a
) =∞

The plot of this function and the cobwebbing are depicted below. We conclude

lim
n→∞

an = 2.

9. In order to find the fixed points, we solve

x = 1 +
2

x
,

which becomes (upon multiplication by x)

x2 − x − 2 = (x − 2)(x + 1) = 0,

and the fixed points are x = −1, 2. In order to check for stability we set f(x) = 1 + 2
x
, and

compute

f ′(x) = − 2

x2
.
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We have

f ′(−1) = − 2 ⇒ −1 is unstable

f ′(2) = − 1

2
⇒ 2 is stable.

10. Since no value for f(x) is given at either x = 0 or at x = 1, we cannot take a Riemann sum
with left or right endpoints. We see, however, that the values of x are precisely the midpoints
of the subintervals in the partition P = [0, 1

4
, 1

2
, 3

4
, 1]. The most reasonable Riemann sum is

4
∑

k=1

f(ck)∆xk,

where the ck are the interval midpoints. That is,

4
∑

k=1

f(ck)∆xk = (
1

2
+

1

3
− 1 − 2)

1

4
= −13

24
.

11. In this case △x = b−a
n

= 2−1
n

= 1
n
, and we use right endpoints xk = 1 + k△x. We have

An =

n
∑

k=1

[(1 + k∆x) + (1 + k∆x)2]∆x

=

n
∑

k=1

[(1 +
k

n
) + (1 + 2

k

n
+

k2

n2
)]

1

n

=
[ 1

n

n
∑

k=1

1 +
1

n2

n
∑

k=1

k +
1

n

n
∑

k=1

1 +
2

n2

n
∑

k=1

k +
1

n3

n
∑

k=1

k2
]

=
[

1 +
1

n2

n(n + 1)

2
+ 1 +

2

n2

n(n + 1)

2
+

1

n3

n(n + 1)(2n + 1)

6

]

.

Finally,

lim
n→∞

An = 1 +
1

2
+ 1 + 1 +

1

3
=

23

6
.

12a. Using the substitution u = ex, for which du = exdx, we find
∫

cos udu = sin u + C = sin(ex) + C.

12b. We make the substitution u = 1 + x, with du = dx, and obtain
∫

x√
u
du =

∫

u − 1√
u

du =

∫

u1/2 − u−1/2du

=
u3/2

3/2
− u1/2

1/2
+ C =

2

3
(1 + x)3/2 − 2(1 + x)1/2 + C

= (1 + x)1/2(
2

3
x − 4

3
) + C.
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12c. In this case, integrate by parts with u = cos−1 x and dv = dx, for which we have
du = − 1√

1−x2
dx and v = x. The integral becomes

x cos−1 x +

∫

x√
1 − x2

dx.

For the remaining integral, we use fast substitution (since u has already been used) to obtain

x cos−1 x −
√

1 − x2 + C.

13a. We make the substitution u = 1 + x3 (or alternatively use fast substitution), so that
du = 3x2dx, and the integral becomes

∫ 28

2

x2

√
u

du

3x2
=

1

3

∫ 28

2

u−1/2du =
1

3

u1/2

1/2

∣

∣

∣

28

2
=

2

3
[
√

28 −
√

2].

13b. We integrate by parts, setting

u = x dv = sec2 xdx

du = dx v = tanx.

We obtain
∫ π

4

0

x sec2 xdx =x tan x
∣

∣

∣

π
4

0
−

∫ π
4

0

tan xdx

=
π

4
+ ln | cos x|

∣

∣

∣

π
4

0
=

π

4
+ ln(

√
2

2
).

14. First, we locate the points of intersection by solving

x4 = 20 − x2 ⇒ x4 + x2 − 20 = 0.

In general, fourth order equations are difficult to solve algebraically, but this is really a
second order equation in the variable x2, and it factors as

(x2 − 4)(x2 + 5) = 0,

so that the real roots are x = ±2. We observe that the upper graph is always y = 20 − x2,
and also take advantage of symmetry to compute the area as

A = 2

∫ 2

0

(20 − x2) − x4dx = 2[20x − x3

3
− x5

5
]20 = 2[40 − 8

3
− 32

5
] =

928

15
.

15. We observe that the graph of y = ex is always above the graph of y = e−x on [0, 2], and
so according to the method of washers,

V =π

∫ 2

0

(ex)2 − (e−x)2dx = π

∫ 2

0

e2x − e−2xdx

=
π

2
[e2x + e−2x]

∣

∣

∣

2

0
=

π

2
[e4 + e−4 − 2],

10



where in this case we used fast substitution.

16. First, the base of the triangle extends from y = x2 up to y = x, so its length is x − x2.
The angle opposite the base is a right angle, so if we drop a line perpendicular to the base
we divide the triangle into two 45-45-90 triangles. In this way, we see that the height of the
triangle is x−x2

2
. (Alternatively, observe that the halves of the triangle can be rearranged

into a square with sidelength x−x2

2
.) The area is

A(x) =
1

2
bh =

1

2
(x − x2)

x − x2

2
=

1

4
(x − x2)2.

The volume is

V =
1

4

∫ 1

0

(x − x2)2dx =
1

4

∫ 1

0

x2 − 2x3 + x4dx =
1

4
[
x3

3
− x4

2
+

x5

5
]10 =

1

120
.
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