M151B Practice Problems for Final Exam

Calculators will not be allowed on the exam. Unjustified answers will not receive credit. On
the exam you will be given the following identities:

ik:@; Zk2 n+1)6(2n+1); Zkg ( n+1)>.
k=1

1. Compute each of the following limits:

la.
T
llm ——
e—2- 22+ 3 — 10
1b. -
lim zes(),
z—0
lc. )
lim rsinzx
z—0 (1 — e:c)2 '
1d.

lim [(z 4 1)Y3 — 2'/3].

r—00

le. The geometric mean of two positive real numbers a and b is defined as vab. Show that

1/z 1/x
Vab = lim (g .

T—00

2a. Find a value for ¢ that makes the given function continuous at all points.

o= {220

c, z=0

2b. Determine whether or not your function from (2a) is differentiable at x = 0. If it is
differentiable at this point, compute its derivative there.

3. Find an equation for the line that is tangent to the graph of

at the point x = 0.

4. Suppose the angle of elevation of the Sun is decreasing at a rate of .25 rad/hr. How fast
is the shadow cast by a 400 ft tall building increasing when the angle of elevation of the Sun
is 57



5. Suppose f(z) is continuous on the interval [a, b] and differentiable on the interval (a,b).
Show that if f'(x) = x for all = € (a,b), then there exists some value ¢ € (0,1) so that

f(0) = f(a) = (b —a).

6. Let
flx) =Pz +3)"3, —oo << 0.

6a. Locate the critical points of f and determine the intervals on which f is increasing and
the intervals on which f is decreasing.

6b. Locate the possible inflection points for f and determine the intervals on which f is
concave up and the intervals on which it is concave down.

6¢c. Evaluate f at the critical points and at the possible inflection points, and determine the
boundary behavior of f by computing limits as x — +o0.

6d. Use your information from Parts a-c to sketch a graph of this function.

7. Find the side-lengths that maximize the area of an isosceles triangle with given perimeter
P =10. (An isosceles triangle is a triangle with two sidelengths equal.)

8. Find all fixed points for the recursion equation

3 1
Qpy1 = Zan + a
Sketch a graph of the function f(a) = %a—i—%, and use the method of cobwebbing to determine
whether or not one of these fixed points will be achieved from the starting value ag = %
9. Find all fixed points for the recursion equation
2

$t+1:1+x_
t

and determine whether or not each is asymptotically stable or unstable.

10. Suppose a function f(x) is continuous on the interval [0, 1] and that you are given the
following table of values:

|z [ f2)

/8] 1/2
3/8] 1/3
5/8 | —1
778 —2

Table 1: Values of f(z) for Problem 1.

Use an appropriate Riemann sum to approximate fol f(z)dz.

11. Use the method of Riemann sums to evaluate

2
/ x + 22dx.
1

2



12. Evaluate the following indefinite integrals.

12a.
/em cos(e”)d.
12b.
/ L dx
Vit
12b.

/cos_1 zdx.

13. Evaluate the following definite integrals.
13a.

3 2
x
/ T g
1 V1+a23

/ xsec? zdr.
0

14. Find the area of the region bounded by the graphs of y = 2% and y = 20 — 22

13b.

ENE]

T

15. Find the volume obtained when the region between the graphs of y = ¢* and y = e,
x € ]0,2], is rotated about the z-axis.

16. Suppose the base of a certain solid is the region in the zy-plane between the line y = x
and the parabola y = z2. Find the volume of the solid created if every cross section is a
right isosceles triangle with hypotenuse in the xy-plane perpendicular to the x-axis.

Solutions

la. We have
T T

lim —— =i S
o 22132 —10 amp (z—2)(z+5)

where we have observed that = — 2 is negative for = to the left of 2.

1b. We apply the Squeeze Theorem in this case, using the inequality
—|zle < ze™() < |z|e.

We have

lim —|z|e = lim |z|e = 0,
z—0 z—0
and so according to the Squeeze Theorem

lim xesm(%) = 0.

z—0



lc. We apply L’Hospital’s Rule twice,

. T sinx . sinx +xcosz . sinz +xcosx

lim 5 = lim =lim ——————

z—0 (1 — e?) =0 2(1 — e¥)(—e?)  a—0 2e2® — 2"
2cosx —xsinx

= lim =
=0  4e2r — 2e”

1d. This limit has the indeterminate form oo — 0o, so the first thing we do is rearrange it
into an expression with the form 8. We have

1
lim (z 4+ 1) — 212 = lim 2'3[(1 + =)/ — 1]
x

R Al B 1€ o Y Rl G
= lim —& — = lim

Tr—00 l‘_l/g Tr—00 _%x—4/3

_ Loops 1
= Jn (14 ) 55 =0

le. We observe that this limit has the general form 1°°, and so we can apply L’Hospital’s
rule. We have
I/ZB bl/ZB ol/z pl/z "
lim(L)x = lim ™2 )" = lim e

T—00 2 r—00 Tr—00

xln(a’l/z;bl/z)

. al/z+b1/z
_ 611mzﬂoo zIn(*—73"—)

In order to compute this limit, we write

al/e 4 pi/e ln(al/”"'bl/” ) 2 (lal/x (ln a) (_

lim zln(———) = lim 2 B i < AT )+ 3 (Ind)(—2))

E~.3m| = é%t\3| =

x

: 1 1/x 1/x 1
= xll_)n;lo W(a / lna+b/ lnb) = 5(111@"‘111[?),

where in this last step we have used that % — 0 as * — oo. The limit is

e%(lna-}-lnb) — e%ln(ab) — eln(ab)l/2 — Vab.

2a. Since )
. sinz
lim =1
z—0 X

)
we can make this function continuous at all points by choosing ¢ = 1.

2b. Since the function is separately defined at x = 0, we must proceed from the definition
of differentiation. We compute

/ 1 BT

f10) = lim I =
] smh—h_ cosh—l_l. —smh_o
IR SR vl S VAR i D S



where the last two steps both used L’Hospital’s rule. We conclude that this function is
differentiable at # = 0, and that f’(0) = 0.

3. First, ,
ooy (I42?)(e” 4 we™) — we”(21)
f (I) - (1 —|—ZL’2)2

which is the slope of the tangent line. Using f(0) = 0 and the general point-slope form
y— f(a) = f'(a)(x — a), we conclude

= f'(0) =1,

Y=

4. First, observe that what we know is % = —.25 rad/hr and what we want to know is ‘Cil—f,

where z is the length of the shadow (see the diagram).

We see that the relation between 6 and z is

400
tanf = —.
T

Upon taking a derivative of this equation with respect to t, we obtain

sec29d9 400 dx
dt a2 dt’
where we can now fix 6 = %, so that sec? ) = COS% =1 = %, while x = t;‘goﬁ = 400v/3.
1 5

s
Combining these observations, we have
dr 2? df

- e 2 z _ B % _
7 = 1003 5 § = —3(400)(=.25)5 = +400 ft/hr.

5. According to the Mean Value Theorem there exists some value ¢ € (a, b) so that

f(b) = f(a)

R ),

In this case f’(c) = ¢, and so we conclude

f(b) = f(a)

DY o5 ) - f@) = - a),



6a. The derivative of f(z) is
z+1

, E—
fiz) = x2/3(x + 3)1/3”
from which we find the critical points x = —3,—1,0. We see that f is increasing on
(—o00, —3] U [—1, 00) and decreasing on [—3, —1].

6b. The second derivative of f(z) is

2

f(x) = "B (x 1 313

from which we find that the possible inflection points are z = 0, —3. We see that f is concave
up on (—oo, —3) U (—3,0) and concave down on (0, c0).

6c. Evaluating f at the critical points, possible inflection points, and at the endpoints, we
have:

lim 23z + 3)2

r— —00

lim '3 (x + 3)%3 = + oo,

Tr—00

6d. Your plot should look something like this:

7. Let y denote the length of the sides of equal length, and let x denote the length of the
side between them. Then the perimeter is

1
10:2y+x:>y:5—§x.



By the Pythagorean Theorem, the height of such a triangle is h = y/y? — 122, and so the
area to be maximized is

1 1 1 1 1 1
A= §x\/y2—1x2 = A(z) = §x\/(5— ix)2—1x2 = §x\/25—5x, 0<z<5.

(The upper limit of 5 is clear both because a value of x larger than this would put a neg-
ative number under the radical, and because the single side cannot be more than half the
perimeter.) In order to maximize A(z), we compute

25 15

Alx) = \;ﬁ

The critical values are x = %, 5, where we observe that = 5 is also a boundary value.
Checking A(z) at the critical and boundary values, we find

A(0)=0
10, 5 /25 25
A =oy/2 ==
3 3V.3  3V3
A(5) =0.
We conclude that the maximum area is 32—\% and the side-lengths are x = 13—0 and y =

5—3(%) = 2. That is, an equilateral triangle.

8. The fixed points solve

3 n 1 N 1 1 I
a=-a+—-—=-a=—=a" =4
4 a 4 a
We conclude that the fixed points are +2. In order to use cobwebbing, we must sketch a

graph of the function

3 1
f(a) = Za + a
First, setting
3 1
/
= - — — = 0
fla)=7--5=0

we find that the critical points are a = i—%, 0. The function is increasing on (—oo, —%] U
[%, oo) and decreasing on [—%, %] Next,

and so the only possible point of inflection is @ = 0. The function is concave down on (—o0, 0)



and concave up on (0, 00). Finally,

1
Jm(Getg)= e
2

f=T == V8

1
lim (Sa+ -) = —
xi%/l*(lla—i_a) >0

Ii (3 + 1) +
m (—a —) = oo
z—0+ 4 a

1
Jm (Ga+ 7)) =00

The plot of this function and the cobwebbing are depicted below. We conclude

lim a, = 2.

n—oo

9. In order to find the fixed points, we solve
2
r=1+—,
x
which becomes (upon multiplication by z)
-2 —-2=(x—2)(r+1)=0,

and the fixed points are x = —1,2. In order to check for stability we set f(z) =1+ %, and

compute
2

x?

f(x) =



We have
f'(=1) = — 2= —1 is unstable
1
f'(2)= - 5= 2 is stable.
10. Since no value for f(x) is given at either = 0 or at x = 1, we cannot take a Riemann sum

with left or right endpoints. We see, however, that the values of x are precisely the midpoints
of the subintervals in the partition P = [0, i, %, %, 1]. The most reasonable Riemann sum is

> flen)Aay,
k=1

where the ¢ are the interval midpoints. That is,

13

4

1 1 1

)A S T
];fc’“ w=(5+3 1= "o

11. In this case Az = b_T“ =1 %, and we use right endpoints z;, = 1 + kAz. We have

n

A, = Zn:[(l + kAz) + (1 4+ kAz)?]|Ax
k=1

k ko k?
1+ — 142
A+ )+ 42+

tﬂ:

k

n2

B
Il

1

1 =,
:b§)+ zyw Xﬁ+—z}+32¥}
1nn+D 2nn+1) 1nn+1)2n+1)
[1+— R e R ; |
Finally,
lim A 1+1+1+1+1 25
m A, = = - = —.

12a. Using the substitution u = e*, for which du = e*dx, we find

/cos udu = sinu + C = sin(e”) + C.

12b. We make the substitution v = 1 + z, with du = dx, and obtain

[ [t o

3/2 2
- _ _ ] 32 _9(1 1/2

372 1/2+C 3( + ) (1+z)/*4+C

2 4

=(1 V2(Zg— = .

(1+2) (31’ 3)+C




2 and dv = dz, for which we have

12c. In this case, integrate by parts with u = cos™
L_dx and v = z. The integral becomes

du = — 7=
~1 T
rcos T+ | ———dux.
/\/1—:62

For the remaining integral, we use fast substitution (since u has already been used) to obtain

reos tx—V1—22+C.

13a. We make the substitution u = 1 4 2? (or alternatively use fast substitution), so that

du = 3z%dx, and the integral becomes
1ul/2128 2
il SVa8 - V3,

/zgx_zﬂZE/QSu—lxzdu: ul’?
2 \/63252 3 ) 31/2 2

13b. We integrate by parts, setting
u=2x
du = dx v =tanx.

z I
— / tan xdx
0 0
V2

i 00T
=T m(YE,
, — 3 T

dv = sec? zdx

We obtain

k]

xrsec? xdr =xtan x

J

14. First, we locate the points of intersection by solving
2t =20 -2 = 2" +2° — 20 = 0.

T
=— +In|cosz|

4

In general, fourth order equations are difficult to solve algebraically, but this is really a

second order equation in the variable 22, and it factors as
(2% — 4)(z* 4+ 5) =0,

so that the real roots are x = £2. We observe that the upper graph is always y = 20 — 22,

and also take advantage of symmetry to compute the area as
L 8 32, 928
=240 - - ——| = .

Jo =2 ==

2

A=2[ (20—2%) —a'de =2[200 — = — —

/0 ( x%) — x'dr = 2[20z T T E 3

15. We observe that the graph of y = e* is always above the graph of y = ¢™* on [0, 2], and

so according to the method of washers,

2 2
1% :71'/ (€")? — (e7)dx = 7T/ e* — e dy
0 0

2 7

; 2[e4+6_4—2],

— _[e2x 4 6—232]

10



where in this case we used fast substitution.

16. First, the base of the triangle extends from y = 2 up to y = z, so its length is z — 22
The angle opposite the base is a right angle, so if we drop a line perpendicular to the base
we divide the triangle into two 45-45-90 triangles. In this way, we see that the height of the

Tr—x

triangle is 5 - (Alternatively, observe that the halves of the triangle can be rearranged

Z‘—SEZ

into a square with sidelength *=

.) The area is

x — x? 1

Az) = %bh _ %(m — 2?) = J@ -

2

The volume is

w
'y

11



