M151B Practice Problems for Final Exam

Calculators will not be allowed on the exam. Unjustified answers will not receive credit. On the exam you will be given the following identities:

$$
\sum_{k=1}^{n} k=\frac{n(n+1)}{2} ; \quad \sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6} ; \quad \sum_{k=1}^{n} k^{3}=\left(\frac{n(n+1)}{2}\right)^{2} .
$$

1. Compute each of the following limits:

1 a .

$$
\lim _{x \rightarrow 2^{-}} \frac{x}{x^{2}+3 x-10}
$$

1b.

$$
\lim _{x \rightarrow 0} x e^{\sin \left(\frac{1}{x}\right)}
$$

1c.

$$
\lim _{x \rightarrow 0} \frac{x \sin x}{\left(1-e^{x}\right)^{2}}
$$

1d.

$$
\lim _{x \rightarrow \infty}\left[(x+1)^{1 / 3}-x^{1 / 3}\right] .
$$

1e. The geometric mean of two positive real numbers a and b is defined as $\sqrt{a b}$. Show that

$$
\sqrt{a b}=\lim _{x \rightarrow \infty}\left(\frac{a^{1 / x}+b^{1 / x}}{2}\right)^{x}
$$

2a. Find a value for c that makes the given function continuous at all points.

$$
f(x)= \begin{cases}\frac{\sin x}{x}, & x \neq 0 \\ c, & x=0\end{cases}
$$

2 b . Determine whether or not your function from (2a) is differentiable at $x=0$. If it is differentiable at this point, compute its derivative there.
3. Find an equation for the line that is tangent to the graph of

$$
f(x)=\frac{x e^{x}}{1+x^{2}}
$$

at the point $x=0$.
4. Suppose the angle of elevation of the Sun is decreasing at a rate of $.25 \mathrm{rad} / \mathrm{hr}$. How fast is the shadow cast by a 400 ft tall building increasing when the angle of elevation of the Sun is $\frac{\pi}{6}$?
5. Suppose $f(x)$ is continuous on the interval $[a, b]$ and differentiable on the interval (a, b). Show that if $f^{\prime}(x)=x$ for all $x \in(a, b)$, then there exists some value $c \in(0,1)$ so that

$$
f(b)-f(a)=c(b-a) .
$$

6. Let

$$
f(x)=x^{1 / 3}(x+3)^{2 / 3}, \quad-\infty<x<\infty .
$$

6a. Locate the critical points of f and determine the intervals on which f is increasing and the intervals on which f is decreasing.
6b. Locate the possible inflection points for f and determine the intervals on which f is concave up and the intervals on which it is concave down.
$6 c$. Evaluate f at the critical points and at the possible inflection points, and determine the boundary behavior of f by computing limits as $x \rightarrow \pm \infty$.

6d. Use your information from Parts a-c to sketch a graph of this function.
7. Find the side-lengths that maximize the area of an isosceles triangle with given perimeter $P=10$. (An isosceles triangle is a triangle with two sidelengths equal.)
8. Find all fixed points for the recursion equation

$$
a_{n+1}=\frac{3}{4} a_{n}+\frac{1}{a_{n}} .
$$

Sketch a graph of the function $f(a)=\frac{3}{4} a+\frac{1}{a}$, and use the method of cobwebbing to determine whether or not one of these fixed points will be achieved from the starting value $a_{0}=\frac{1}{2}$.
9. Find all fixed points for the recursion equation

$$
x_{t+1}=1+\frac{2}{x_{t}}
$$

and determine whether or not each is asymptotically stable or unstable.
10. Suppose a function $f(x)$ is continuous on the interval $[0,1]$ and that you are given the following table of values:

x	$f(x)$
$1 / 8$	$1 / 2$
$3 / 8$	$1 / 3$
$5 / 8$	-1
$7 / 8$	-2

Table 1: Values of $f(x)$ for Problem 1.
Use an appropriate Riemann sum to approximate $\int_{0}^{1} f(x) d x$.
11. Use the method of Riemann sums to evaluate

$$
\int_{1}^{2} x+x^{2} d x
$$

12. Evaluate the following indefinite integrals.

12a.

$$
\int e^{x} \cos \left(e^{x}\right) d x
$$

12b.

$$
\int \frac{x}{\sqrt{1+x}} d x
$$

12b.

$$
\int \cos ^{-1} x d x
$$

13. Evaluate the following definite integrals.

13a.

$$
\int_{1}^{3} \frac{x^{2}}{\sqrt{1+x^{3}}} d x
$$

13b.

$$
\int_{0}^{\frac{\pi}{4}} x \sec ^{2} x d x
$$

14. Find the area of the region bounded by the graphs of $y=x^{4}$ and $y=20-x^{2}$.
15. Find the volume obtained when the region between the graphs of $y=e^{x}$ and $y=e^{-x}$, $x \in[0,2]$, is rotated about the x-axis.
16. Suppose the base of a certain solid is the region in the $x y$-plane between the line $y=x$ and the parabola $y=x^{2}$. Find the volume of the solid created if every cross section is a right isosceles triangle with hypotenuse in the $x y$-plane perpendicular to the x-axis.

Solutions

1a. We have

$$
\lim _{x \rightarrow 2^{-}} \frac{x}{x^{2}+3 x-10}=\lim _{x \rightarrow 2^{-}} \frac{x}{(x-2)(x+5)}=-\infty
$$

where we have observed that $x-2$ is negative for x to the left of 2 .
1b. We apply the Squeeze Theorem in this case, using the inequality

$$
-|x| e \leq x e^{\sin \left(\frac{1}{x}\right)} \leq|x| e
$$

We have

$$
\lim _{x \rightarrow 0}-|x| e=\lim _{x \rightarrow 0}|x| e=0,
$$

and so according to the Squeeze Theorem

$$
\lim _{x \rightarrow 0} x e^{\sin \left(\frac{1}{x}\right)}=0
$$

1c. We apply L'Hospital's Rule twice,

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{x \sin x}{\left(1-e^{x}\right)^{2}} & =\lim _{x \rightarrow 0} \frac{\sin x+x \cos x}{2\left(1-e^{x}\right)\left(-e^{x}\right)}=\lim _{x \rightarrow 0} \frac{\sin x+x \cos x}{2 e^{2 x}-2 e^{x}} \\
& =\lim _{x \rightarrow 0} \frac{2 \cos x-x \sin x}{4 e^{2 x}-2 e^{x}}=1 .
\end{aligned}
$$

1d. This limit has the indeterminate form $\infty-\infty$, so the first thing we do is rearrange it into an expression with the form $\frac{0}{0}$. We have

$$
\begin{aligned}
\lim _{x \rightarrow \infty}(x+1)^{1 / 3}-x^{1 / 3} & =\lim _{x \rightarrow \infty} x^{1 / 3}\left[\left(1+\frac{1}{x}\right)^{1 / 3}-1\right] \\
& =\lim _{x \rightarrow \infty} \frac{\left(1+\frac{1}{x}\right)^{1 / 3}-1}{x^{-1 / 3}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{3}\left(1+\frac{1}{x}\right)^{-2 / 3}\left(-\frac{1}{x^{2}}\right)}{-\frac{1}{3} x^{-4 / 3}} \\
& =\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{-2 / 3} \frac{1}{x^{2 / 3}}=0 .
\end{aligned}
$$

1e. We observe that this limit has the general form 1^{∞}, and so we can apply L'Hospital's rule. We have

$$
\begin{aligned}
\lim _{x \rightarrow \infty}\left(\frac{a^{1 / x}+b^{1 / x}}{2}\right)^{x} & =\lim _{x \rightarrow \infty} e^{\ln \left(\frac{a^{1 / x}+b^{1 / x}}{2}\right)^{x}}=\lim _{x \rightarrow \infty} e^{x \ln \left(\frac{a^{1 / x}+b^{1 / x}}{2}\right)} \\
& =e^{\lim _{x \rightarrow \infty} x \ln \left(\frac{a^{1 / x}+b^{1 / x}}{2}\right)} .
\end{aligned}
$$

In order to compute this limit, we write

$$
\begin{aligned}
\lim _{x \rightarrow \infty} x \ln \left(\frac{a^{1 / x}+b^{1 / x}}{2}\right) & =\lim _{x \rightarrow \infty} \frac{\ln \left(\frac{a^{1 / x}+b^{1 / x}}{2}\right)}{\frac{1}{x}}=\lim _{x \rightarrow \infty} \frac{\frac{2}{a^{1 / x}+b^{1 / x}}\left(\frac{1}{2} a^{1 / x}(\ln a)\left(-\frac{1}{x^{2}}\right)+\frac{1}{2} b^{1 / x}(\ln b)\left(-\frac{1}{x^{2}}\right)\right)}{-\frac{1}{x^{2}}} \\
& =\lim _{x \rightarrow \infty} \frac{1}{a^{1 / x}+b^{1 / x}}\left(a^{1 / x} \ln a+b^{1 / x} \ln b\right)=\frac{1}{2}(\ln a+\ln b),
\end{aligned}
$$

where in this last step we have used that $\frac{1}{x} \rightarrow 0$ as $x \rightarrow \infty$. The limit is

$$
e^{\frac{1}{2}(\ln a+\ln b)}=e^{\frac{1}{2} \ln (a b)}=e^{\ln (a b)^{1 / 2}}=\sqrt{a b} .
$$

2a. Since

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

we can make this function continuous at all points by choosing $c=1$.
2 b . Since the function is separately defined at $x=0$, we must proceed from the definition of differentiation. We compute

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{\frac{\sin h}{h}-1}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin h-h}{h^{2}}=\lim _{h \rightarrow 0} \frac{\cos h-1}{2 h}=\lim _{h \rightarrow 0} \frac{-\sin h}{2}=0,
\end{aligned}
$$

where the last two steps both used L'Hospital's rule. We conclude that this function is differentiable at $x=0$, and that $f^{\prime}(0)=0$.
3. First,

$$
f^{\prime}(x)=\frac{\left(1+x^{2}\right)\left(e^{x}+x e^{x}\right)-x e^{x}(2 x)}{\left(1+x^{2}\right)^{2}} \Rightarrow f^{\prime}(0)=1
$$

which is the slope of the tangent line. Using $f(0)=0$ and the general point-slope form $y-f(a)=f^{\prime}(a)(x-a)$, we conclude

$$
y=x
$$

4. First, observe that what we know is $\frac{d \theta}{d t}=-.25 \mathrm{rad} / \mathrm{hr}$ and what we want to know is $\frac{d x}{d t}$, where x is the length of the shadow (see the diagram).

We see that the relation between θ and x is

$$
\tan \theta=\frac{400}{x}
$$

Upon taking a derivative of this equation with respect to t, we obtain

$$
\sec ^{2} \theta \frac{d \theta}{d t}=-\frac{400}{x^{2}} \frac{d x}{d t}
$$

where we can now fix $\theta=\frac{\pi}{6}$, so that $\sec ^{2} \theta=\frac{1}{\cos ^{2} \frac{\pi}{6}}=\frac{1}{\frac{3}{4}}=\frac{4}{3}$, while $x=\frac{400}{\tan \frac{\pi}{6}}=400 \sqrt{3}$. Combining these observations, we have

$$
\frac{d x}{d t}=-\frac{x^{2}}{400} \frac{d \theta}{d t} \sec ^{2} \frac{\pi}{6}=-3(400)(-.25) \frac{4}{3}=+400 \mathrm{ft} / \mathrm{hr} .
$$

5. According to the Mean Value Theorem there exists some value $c \in(a, b)$ so that

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)
$$

In this case $f^{\prime}(c)=c$, and so we conclude

$$
\frac{f(b)-f(a)}{b-a}=c \Rightarrow f(b)-f(a)=c(b-a)
$$

6a. The derivative of $f(x)$ is

$$
f^{\prime}(x)=\frac{x+1}{x^{2 / 3}(x+3)^{1 / 3}}
$$

from which we find the critical points $x=-3,-1,0$. We see that f is increasing on $(-\infty,-3] \cup[-1, \infty)$ and decreasing on $[-3,-1]$.
6 b . The second derivative of $f(x)$ is

$$
f^{\prime \prime}(x)=-\frac{2}{x^{5 / 3}(x+3)^{4 / 3}},
$$

from which we find that the possible inflection points are $x=0,-3$. We see that f is concave up on $(-\infty,-3) \cup(-3,0)$ and concave down on $(0, \infty)$.

6c. Evaluating f at the critical points, possible inflection points, and at the endpoints, we have:

$$
\begin{aligned}
f(-3) & =0 \\
f(-1) & =-2^{2 / 3} \\
f(0) & =0 \\
\lim _{x \rightarrow-\infty} x^{1 / 3}(x+3)^{2 / 3} & =-\infty \\
\lim _{x \rightarrow \infty} x^{1 / 3}(x+3)^{2 / 3} & =+\infty .
\end{aligned}
$$

6 d . Your plot should look something like this:
7. Let y denote the length of the sides of equal length, and let x denote the length of the side between them. Then the perimeter is

$$
10=2 y+x \Rightarrow y=5-\frac{1}{2} x .
$$

By the Pythagorean Theorem, the height of such a triangle is $h=\sqrt{y^{2}-\frac{1}{4} x^{2}}$, and so the area to be maximized is

$$
A=\frac{1}{2} x \sqrt{y^{2}-\frac{1}{4} x^{2}} \Rightarrow A(x)=\frac{1}{2} x \sqrt{\left(5-\frac{1}{2} x\right)^{2}-\frac{1}{4} x^{2}}=\frac{1}{2} x \sqrt{25-5 x}, \quad 0 \leq x \leq 5 .
$$

(The upper limit of 5 is clear both because a value of x larger than this would put a negative number under the radical, and because the single side cannot be more than half the perimeter.) In order to maximize $A(x)$, we compute

$$
A^{\prime}(x)=\frac{\frac{25}{2}-\frac{15}{4} x}{\sqrt{25-5 x}} .
$$

The critical values are $x=\frac{10}{3}, 5$, where we observe that $x=5$ is also a boundary value. Checking $A(x)$ at the critical and boundary values, we find

$$
\begin{aligned}
A(0) & =0 \\
A\left(\frac{10}{3}\right) & =\frac{5}{3} \sqrt{\frac{25}{3}}=\frac{25}{3 \sqrt{3}} \\
A(5) & =0 .
\end{aligned}
$$

We conclude that the maximum area is $\frac{25}{3 \sqrt{3}}$ and the side-lengths are $x=\frac{10}{3}$ and $y=$ $5-\frac{1}{2}\left(\frac{10}{3}\right)=\frac{10}{3}$. That is, an equilateral triangle.
8. The fixed points solve

$$
a=\frac{3}{4} a+\frac{1}{a} \Rightarrow \frac{1}{4} a=\frac{1}{a} \Rightarrow a^{2}=4 .
$$

We conclude that the fixed points are ± 2. In order to use cobwebbing, we must sketch a graph of the function

$$
f(a)=\frac{3}{4} a+\frac{1}{a} .
$$

First, setting

$$
f^{\prime}(a)=\frac{3}{4}-\frac{1}{a^{2}}=0,
$$

we find that the critical points are $a= \pm \frac{2}{\sqrt{3}}, 0$. The function is increasing on $\left(-\infty,-\frac{2}{\sqrt{3}}\right] \cup$ $\left[\frac{2}{\sqrt{3}}, \infty\right)$ and decreasing on $\left[-\frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}\right]$. Next,

$$
f^{\prime \prime}(a)=\frac{2}{a^{3}},
$$

and so the only possible point of inflection is $a=0$. The function is concave down on $(-\infty, 0)$
and concave up on $(0, \infty)$. Finally,

$$
\begin{aligned}
\lim _{a \rightarrow-\infty}\left(\frac{3}{4} a+\frac{1}{a}\right) & =-\infty \\
f\left(-\frac{2}{\sqrt{3}}\right) & =-\sqrt{3} \\
\lim _{x \rightarrow 0^{-}}\left(\frac{3}{4} a+\frac{1}{a}\right) & =-\infty \\
\lim _{x \rightarrow 0^{+}}\left(\frac{3}{4} a+\frac{1}{a}\right) & =+\infty \\
f\left(\frac{2}{\sqrt{3}}\right) & =\sqrt{3} \\
\lim _{a \rightarrow-\infty}\left(\frac{3}{4} a+\frac{1}{a}\right) & =\infty
\end{aligned}
$$

The plot of this function and the cobwebbing are depicted below. We conclude

$$
\lim _{n \rightarrow \infty} a_{n}=2
$$

9. In order to find the fixed points, we solve

$$
x=1+\frac{2}{x}
$$

which becomes (upon multiplication by x)

$$
x^{2}-x-2=(x-2)(x+1)=0
$$

and the fixed points are $x=-1,2$. In order to check for stability we set $f(x)=1+\frac{2}{x}$, and compute

$$
f^{\prime}(x)=-\frac{2}{x^{2}} .
$$

We have

$$
\begin{aligned}
f^{\prime}(-1) & =-2 \Rightarrow-1 \text { is unstable } \\
f^{\prime}(2) & =-\frac{1}{2} \Rightarrow 2 \text { is stable. }
\end{aligned}
$$

10. Since no value for $f(x)$ is given at either $x=0$ or at $x=1$, we cannot take a Riemann sum with left or right endpoints. We see, however, that the values of x are precisely the midpoints of the subintervals in the partition $P=\left[0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\right]$. The most reasonable Riemann sum is

$$
\sum_{k=1}^{4} f\left(c_{k}\right) \Delta x_{k}
$$

where the c_{k} are the interval midpoints. That is,

$$
\sum_{k=1}^{4} f\left(c_{k}\right) \Delta x_{k}=\left(\frac{1}{2}+\frac{1}{3}-1-2\right) \frac{1}{4}=-\frac{13}{24}
$$

11. In this case $\triangle x=\frac{b-a}{n}=\frac{2-1}{n}=\frac{1}{n}$, and we use right endpoints $x_{k}=1+k \triangle x$. We have

$$
\begin{aligned}
A_{n} & =\sum_{k=1}^{n}\left[(1+k \Delta x)+(1+k \Delta x)^{2}\right] \Delta x \\
& =\sum_{k=1}^{n}\left[\left(1+\frac{k}{n}\right)+\left(1+2 \frac{k}{n}+\frac{k^{2}}{n^{2}}\right)\right] \frac{1}{n} \\
& =\left[\frac{1}{n} \sum_{k=1}^{n} 1+\frac{1}{n^{2}} \sum_{k=1}^{n} k+\frac{1}{n} \sum_{k=1}^{n} 1+\frac{2}{n^{2}} \sum_{k=1}^{n} k+\frac{1}{n^{3}} \sum_{k=1}^{n} k^{2}\right] \\
& =\left[1+\frac{1}{n^{2}} \frac{n(n+1)}{2}+1+\frac{2}{n^{2}} \frac{n(n+1)}{2}+\frac{1}{n^{3}} \frac{n(n+1)(2 n+1)}{6}\right] .
\end{aligned}
$$

Finally,

$$
\lim _{n \rightarrow \infty} A_{n}=1+\frac{1}{2}+1+1+\frac{1}{3}=\frac{23}{6} .
$$

12a. Using the substitution $u=e^{x}$, for which $d u=e^{x} d x$, we find

$$
\int \cos u d u=\sin u+C=\sin \left(e^{x}\right)+C
$$

12b. We make the substitution $u=1+x$, with $d u=d x$, and obtain

$$
\begin{aligned}
\int \frac{x}{\sqrt{u}} d u & =\int \frac{u-1}{\sqrt{u}} d u=\int u^{1 / 2}-u^{-1 / 2} d u \\
& =\frac{u^{3 / 2}}{3 / 2}-\frac{u^{1 / 2}}{1 / 2}+C=\frac{2}{3}(1+x)^{3 / 2}-2(1+x)^{1 / 2}+C \\
& =(1+x)^{1 / 2}\left(\frac{2}{3} x-\frac{4}{3}\right)+C .
\end{aligned}
$$

12c. In this case, integrate by parts with $u=\cos ^{-1} x$ and $d v=d x$, for which we have $d u=-\frac{1}{\sqrt{1-x^{2}}} d x$ and $v=x$. The integral becomes

$$
x \cos ^{-1} x+\int \frac{x}{\sqrt{1-x^{2}}} d x
$$

For the remaining integral, we use fast substitution (since u has already been used) to obtain

$$
x \cos ^{-1} x-\sqrt{1-x^{2}}+C
$$

13a. We make the substitution $u=1+x^{3}$ (or alternatively use fast substitution), so that $d u=3 x^{2} d x$, and the integral becomes

$$
\int_{2}^{28} \frac{x^{2}}{\sqrt{u}} \frac{d u}{3 x^{2}}=\frac{1}{3} \int_{2}^{28} u^{-1 / 2} d u=\left.\frac{1}{3} \frac{u^{1 / 2}}{1 / 2}\right|_{2} ^{28}=\frac{2}{3}[\sqrt{28}-\sqrt{2}] .
$$

13b. We integrate by parts, setting

$$
\begin{array}{rl}
u=x & d v=\sec ^{2} x d x \\
d u=d x & v=\tan x
\end{array}
$$

We obtain

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{4}} x \sec ^{2} x d x & =\left.x \tan x\right|_{0} ^{\frac{\pi}{4}}-\int_{0}^{\frac{\pi}{4}} \tan x d x \\
& =\frac{\pi}{4}+\left.\ln |\cos x|\right|_{0} ^{\frac{\pi}{4}}=\frac{\pi}{4}+\ln \left(\frac{\sqrt{2}}{2}\right)
\end{aligned}
$$

14. First, we locate the points of intersection by solving

$$
x^{4}=20-x^{2} \Rightarrow x^{4}+x^{2}-20=0
$$

In general, fourth order equations are difficult to solve algebraically, but this is really a second order equation in the variable x^{2}, and it factors as

$$
\left(x^{2}-4\right)\left(x^{2}+5\right)=0
$$

so that the real roots are $x= \pm 2$. We observe that the upper graph is always $y=20-x^{2}$, and also take advantage of symmetry to compute the area as

$$
A=2 \int_{0}^{2}\left(20-x^{2}\right)-x^{4} d x=2\left[20 x-\frac{x^{3}}{3}-\frac{x^{5}}{5}\right]_{0}^{2}=2\left[40-\frac{8}{3}-\frac{32}{5}\right]=\frac{928}{15}
$$

15. We observe that the graph of $y=e^{x}$ is always above the graph of $y=e^{-x}$ on $[0,2]$, and so according to the method of washers,

$$
\begin{aligned}
V & =\pi \int_{0}^{2}\left(e^{x}\right)^{2}-\left(e^{-x}\right)^{2} d x=\pi \int_{0}^{2} e^{2 x}-e^{-2 x} d x \\
& =\left.\frac{\pi}{2}\left[e^{2 x}+e^{-2 x}\right]\right|_{0} ^{2}=\frac{\pi}{2}\left[e^{4}+e^{-4}-2\right]
\end{aligned}
$$

where in this case we used fast substitution.
16. First, the base of the triangle extends from $y=x^{2}$ up to $y=x$, so its length is $x-x^{2}$. The angle opposite the base is a right angle, so if we drop a line perpendicular to the base we divide the triangle into two 45-45-90 triangles. In this way, we see that the height of the triangle is $\frac{x-x^{2}}{2}$. (Alternatively, observe that the halves of the triangle can be rearranged into a square with sidelength $\frac{x-x^{2}}{2}$.) The area is

$$
A(x)=\frac{1}{2} b h=\frac{1}{2}\left(x-x^{2}\right) \frac{x-x^{2}}{2}=\frac{1}{4}\left(x-x^{2}\right)^{2} .
$$

The volume is

$$
V=\frac{1}{4} \int_{0}^{1}\left(x-x^{2}\right)^{2} d x=\frac{1}{4} \int_{0}^{1} x^{2}-2 x^{3}+x^{4} d x=\frac{1}{4}\left[\frac{x^{3}}{3}-\frac{x^{4}}{2}+\frac{x^{5}}{5}\right]_{0}^{1}=\frac{1}{120} .
$$

