Additional Problems

The following problems were taken from Calculus: Early Vectors, by J. Stewart, which is being used by the other sections of M151.

1. A ladder 10 ft long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a speed of $2 \mathrm{ft} / \mathrm{s}$, how fast is the angle between the top of the ladder and the wall changing when the angle is $\frac{\pi}{4}$?
Answer: $\frac{\sqrt{2}}{5} \mathrm{rad} / \mathrm{s}$.
2. A baseball diamond is a square with sidelengths 90 ft . If a batter hits the ball and runs toward first base with a speed of $24 \mathrm{ft} / \mathrm{s}$, at what rate is his distance from second base changing when he is half way to first?

Answer: - $10.7331 \mathrm{ft} / \mathrm{s}$.
3. A water trough is 10 m long and a cross section has the shape of an isosceles trapezoid that is 30 cm wide at the bottom, 80 cm wide at the top, and has a height of 50 cm . If the trough is being filled with water at the rate of $.2 \mathrm{~m}^{3} / \mathrm{min}$, how fast is the water level rising when the water is 30 cm deep.
Answer: $\frac{1}{3} \mathrm{~m} / \mathrm{min}$ or $\frac{10}{3} \mathrm{~cm} / \mathrm{min}$.
4. Gravel is being dumped from a conveyor belt at a rate of $30 \mathrm{ft}^{3} / \mathrm{min}$ and its coarseness is such that it forms a pile in the shape of a cone whose base diameter and height are always equal. How fast is the height of the pile increasing when the pile is 10 ft high?
Answer: $\frac{1.2}{\pi} \mathrm{ft} / \mathrm{min}$.
5. A kite 100 ft above the ground moves horizontally at a speed of $8 \mathrm{ft} / \mathrm{s}$. At what rate is the angle between the string and the horizontal changing when 200 ft of string have been let out?
Answer: $-\frac{1}{50} \frac{\mathrm{rad}}{\mathrm{s}}$.
6. A television camera is positioned 4000 ft from the base of a rocket launch pad. A rocket rises vertically and its speed is $600 \mathrm{ft} / \mathrm{s}$ when it has risen 3000 ft .
6a. How fast is the distance from the camera to the rocket changing at that moment?
Answer: $360 \mathrm{ft} / \mathrm{s}$.
6 b . If the camera is always kept focused on the rocket, how fast is the camera's angle of elevation changing at that same moment?
Answer: $\frac{24}{50} \mathrm{rad} / \mathrm{s}$

