M611 Fall 2019 Assignment 10, due Monday Nov. 18

1. [10 pts] Compute the volume for a heat ball

$$E(\vec{x}, t; r) = \{ (\vec{y}, s) : s \le t, \Phi(\vec{x} - \vec{y}, t - s) \ge \frac{1}{r^n} \}.$$

2. [10 pts] Let $U \subset \mathbb{R}^n$ be open and bounded, T > 0, and assume $u \in C_1^2(U_T)$, where $U_T = U \times (0, T]$. Let

$$U_{\epsilon} = \{ \vec{x} \in U : \text{dist} \ (\vec{x}, \partial U) > \epsilon \}$$

and for $\vec{x} \in U_{\epsilon}$ set

$$u^{\epsilon}(\vec{x},t) = \eta_{\epsilon} * u(\cdot,t) = \int_{B(\vec{x},\epsilon)} \eta_{\epsilon}(\vec{x}-\vec{y})u(\vec{y},t)d\vec{y}.$$

a. Show that if u satisfies the heat equation on U_T then u^{ϵ} satisfies the heat equation on $U_T^{\epsilon} := U_{\epsilon} \times (0, T].$

b. Show that the mixed partial derivatives $u_{tx_i}^{\epsilon}$ and $u_{x_it}^{\epsilon}$ both exist in U_T^{ϵ} and $u_{tx_i}^{\epsilon} = u_{x_it}^{\epsilon}$ in U_T^{ϵ} .

c. Use (a) and (b) to complete our proof from class of Theorem 2.3.3 in Evans.

3. [10 pts] (Evans 2.5.17.) We say $v \in C_1^2(U_T)$ is a subsolution of the heat equation if

$$v_t - \Delta v \leq 0$$
 in U_T .

a. Prove for a subsolution v that

$$v(\vec{x},t) \le \frac{1}{4r^n} \int \int_{E(\vec{x},t,r)} v(\vec{y},s) \frac{|\vec{x}-\vec{y}|^2}{(t-s)^2} d\vec{y} ds$$

for all $E(\vec{x}, t; r) \subset U_T$.

b. Prove that therefore $\max_{\bar{U}_T} v = \max_{\Gamma_T} v$.

c. Let $\phi : \mathbb{R} \to \mathbb{R}$ be smooth and convex. Assume u solves the heat equation and $v := \phi(u)$. Prove v is a subsolution.

d. Prove $v := |Du|^2 + u_t^2$ is a subsolution, whenever u solves the heat equation.

4. [10 pts] (**Evans 5.10.5.**) Let U and V be open sets, with $V \subset C U$. Show there exists a smooth function ζ such that $\zeta \equiv 1$ on V, $\zeta = 0$ near ∂U . (Hint: Take $V \subset C W \subset C U$ and mollify χ_W).

Note. Also check that $0 \le \zeta \le 1$.