M611 Fall 2019 Assignment 5, due Friday Oct. 4

1. [10 pts] We define the convolution of two functions $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
f * g(\vec{x}):=\int_{\mathbb{R}^{n}} f(\vec{x}-\vec{y}) g(\vec{y}) d \vec{y} .
$$

Establish the following properties of convolution:
(i) For $f, g \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$

$$
f * g=g * f
$$

(ii)

$$
f, g \in L^{2}\left(\mathbb{R}^{n}\right) \Rightarrow\|f * g\|_{L^{\infty}} \leq\|f\|_{L^{2}}\|g\|_{L^{2}}
$$

(iii)

$$
f, g \in L^{1}\left(\mathbb{R}^{n}\right) \Rightarrow\|f * g\|_{L^{1}} \leq\|f\|_{L^{1}}\|g\|_{L^{1}}
$$

$$
\begin{equation*}
f, g \in L^{1}\left(\mathbb{R}^{n}\right) \cap L^{2}\left(\mathbb{R}^{n}\right) \Rightarrow f * g \in L^{1}\left(\mathbb{R}^{n}\right) \cap L^{\infty}\left(\mathbb{R}^{n}\right) \cap C\left(\mathbb{R}^{n}\right) \tag{iv}
\end{equation*}
$$

Note. In proving Items (ii) and (iii), you will see that if either $f, g \in L^{2}\left(\mathbb{R}^{n}\right)$ (Item (ii)) or $f, g \in L^{1}\left(\mathbb{R}^{n}\right)$ (Item (iii)), then $f(\vec{x}-\cdot) g(\cdot) \in L^{1}\left(\mathbb{R}^{n}\right)$ for a.e. $\vec{x} \in \mathbb{R}^{n}$. It follows immediately that the symmetry stated in Item (i) holds in those cases as well.
2. [10 pts] (Evans 1.5.3.) Prove the Multinomial Theorem

$$
\left(x_{1}+x_{2}+\cdots+x_{n}\right)^{k}=\sum_{|\alpha|=k}\binom{|\alpha|}{\alpha} \vec{x}^{\alpha},
$$

where $\binom{|\alpha|}{\alpha}:=\frac{|\alpha|!}{\alpha!}, \alpha!=\alpha_{1}!\alpha_{2}!\ldots \alpha_{n}!$, and $\vec{x}^{\alpha}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}$. The sum is taken over all multiindices $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ with $|\alpha|=k$.
3. [10 pts] Let $B^{o}(0, r)$ denote the open ball of radius r in \mathbb{R}^{n}, and take as definitions

$$
\begin{aligned}
\left|B^{o}(0, r)\right| & :=\int_{B^{o}(0, r)} 1 d \vec{x} \\
\left|\partial B^{o}(0, r)\right| & :=\int_{\partial B^{\circ}(0, r)} 1 d S .
\end{aligned}
$$

a. Show that

$$
\left|B^{o}(0, r)\right|=\left|B^{o}(0,1)\right| r^{n}
$$

and likewise

$$
\left|\partial B^{o}(0, r)\right|=\left|\partial B^{o}(0,1)\right| r^{n-1}
$$

b. Show that

$$
\left|\partial B^{o}(0, r)\right|=\frac{n}{r}\left|B^{o}(0, r)\right| .
$$

c. Show that

$$
\left|\partial B^{o}(0,1)\right|=\frac{2 \pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}\right)},
$$

where Γ denotes the gamma function

$$
\Gamma(k)=\int_{0}^{\infty} t^{k-1} e^{-t} d t
$$

(Hint. Use the integral equality $\int_{\mathbb{R}^{n}} e^{-|\vec{x}|^{2}} d \vec{x}=\pi^{n / 2}$, and evaluate the integral in polar coordinates.)
d. Show that

$$
\frac{2 \pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}\right)}=\frac{n \pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}+1\right)}
$$

so that we find the volumes:

$$
\left|\partial B^{o}(0,1)\right|=n \alpha(n),
$$

where

$$
\alpha(n)=\frac{\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}+1\right)} .
$$

Note that $\left|B^{o}(0,1)\right|=\alpha(n)$ and this could just as well have been stated for the closed ball $B(0, r)$.
4. [10 pts] (Evans 1.5.5.) Assume that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is smooth. Prove

$$
f(\vec{x})=\sum_{|\alpha| \leq k} \frac{D^{\alpha} f(0)}{\alpha!} \vec{x}^{\alpha}+\mathbf{O}\left(|\vec{x}|^{k+1}\right)
$$

Note. In fact, let's be a bit more precise: Suppose $f \in C^{k+1}\left(B^{o}(0, r)\right)$ for some $r>0$ and prove that for any $\vec{x} \in B^{o}(0, r) \subset \mathbb{R}^{n}$

$$
f(\vec{x})=\sum_{|\alpha| \leq k} \frac{D^{\alpha} f(0)}{\alpha!} \vec{x}^{\alpha}+\sum_{|\alpha|=k+1} \frac{D^{\alpha} f(\vec{\xi})}{\alpha!} \vec{x}^{\alpha}
$$

where $\vec{\xi}$ lies on a line between 0 and \vec{x}. Students can assume Taylor's Theorem for a single variable. See, for example, Theorem 5.15 of Rudin, p. 110.

