M611 Fall 2019, Assignment 7, due Friday Oct. 18

1. [10 pts] (Evans 2.5.3.) Modify the proof of the mean value formulas to show for $n \geq 3$ that

$$
u(0)=f_{\partial B(0, r)} g d S+\frac{1}{n(n-2) \alpha(n)} \int_{B(0, r)}\left(\frac{1}{|\vec{x}|^{n-2}}-\frac{1}{r^{n-2}}\right) f d \vec{x}
$$

provided

$$
\begin{aligned}
-\Delta u=f & \text { in } B^{o}(0, r) \\
u=g & \text { in } \partial B(0, r) .
\end{aligned}
$$

Note. Assume $f \in C(B(0, r))$ (the closed ball), and $g \in C(\partial B(0, r))$.
2. [10 pts] (Evans 2.5.4.) Give a direct proof that if $u \in C^{2}(U) \cap C(\bar{U})$ is harmonic within a bounded open set U, then

$$
\max _{\bar{U}} u=\max _{\partial U} u
$$

(Hint: Define $u_{\epsilon}:=u+\epsilon|\vec{x}|^{2}$ for $\epsilon>0$, and show u_{ϵ} cannot attain its maximum over \bar{U} at an interior point.)
3. [10 pts] (Evans 2.5.5.) We say $v \in C^{2}(\bar{U})$ is subharmonic if

$$
-\Delta v \leq 0 \quad \text { in } U
$$

a. Prove for subharmonic v that

$$
v(\vec{x}) \leq f_{B(\vec{x}, r)} v d \vec{y} \quad \text { for all } B(\vec{x}, r) \subset U
$$

b. Prove that therefore $\max _{\bar{U}} v=\max _{\partial U} v$.
c. Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be smooth and convex. Assume u is harmonic and $v:=\phi(u)$. Prove v is subharmonic.
d. Prove $v:=|D u|^{2}$ is subharmonic whenever u is harmonic.
4. [10 pts] (Evans 2.5.6.) Let U be a bounded, open subset of \mathbb{R}^{n}. Prove that there exists a constant C, depending only on U, such that

$$
\max _{\bar{U}}|u| \leq C\left(\max _{\partial U}|g|+\max _{\bar{U}}|f|\right)
$$

whenever u is a smooth solution of

$$
\begin{array}{rll}
-\Delta u=f & \text { in } U \\
u=g & \text { on } \partial U .
\end{array}
$$

(Hint: $-\Delta\left(u+\frac{|\vec{x}|^{2}}{2 n} \lambda\right) \leq 0$, for $\lambda:=\max _{\bar{U}}|f|$.)

