M611 Fall 2019 Assignment 9, due Friday Nov. 8

1. [10 pts] (Evans 2.5.12.) Suppose u is smooth and solves $u_{t}-\Delta u=0$ in $\mathbb{R}^{n} \times(0, \infty)$.
(i) Show $u_{\lambda}(\vec{x}, t):=u\left(\lambda \vec{x}, \lambda^{2} t\right)$ also solves the heat equation for each $\lambda \in \mathbb{R}$.
(ii) Use (i) to show $v(\vec{x}, t):=\vec{x} \cdot D u(\vec{x}, t)+2 t u_{t}(\vec{x}, t)$ solves the heat equation as well.
2. [10 pts] Suppose $f \in C_{1}^{2}\left(\mathbb{R}^{n} \times \mathbb{R}\right)$ has compact support and set

$$
u(\vec{x}, t)=\int_{-\infty}^{+\infty} \int_{\mathbb{R}^{n}} \Phi(\vec{x}-\vec{y}, t-s) f(\vec{y}, s) d \vec{y} d s
$$

Show that $u \in C_{1}^{2}\left(\left(\mathbb{R}^{n} \times \mathbb{R}\right) \backslash\left(\mathbb{R}^{n} \times\{0\}\right)\right)$, and

$$
u_{t}-\Delta u=f ; \quad \text { in }\left(\mathbb{R}^{n} \times \mathbb{R}\right) \backslash\left(\mathbb{R}^{n} \times\{0\}\right)
$$

3. [10 pts] (Evans 2.5.15.) Given $g:[0, \infty) \rightarrow \mathbb{R}$, with $g(0)=0$, derive the formula

$$
u(x, t)=\frac{x}{\sqrt{4 \pi}} \int_{0}^{t} \frac{1}{(t-s)^{3 / 2}} e^{-\frac{x^{2}}{4(t-s)}} g(s) d s
$$

for a solution of the initial/boundary-value problem

$$
\begin{aligned}
u_{t}-u_{x x}=0 & \text { in } \mathbb{R}_{+} \times(0, \infty) \\
u=0 & \text { on } \mathbb{R}_{+} \times\{t=0\} \\
u=g & \text { on }\{x=0\} \times[0, \infty)
\end{aligned}
$$

(Hint: Let $v(x, t):=u(x, t)-g(t)$ and extend v to $\{x<0\}$ by odd reflection.)
Note. Although we assumed $f \in C_{1}^{2}\left(\mathbb{R}^{n} \times[0, \infty)\right)$ with compact support in our proof of Theorem 2.3.2, equation (13) is valid much more generally, and Evans (presumably) means for you to apply it formally here.
4. [10 pts] Suppose $g \in L^{1}\left(\mathbb{R}^{n}\right) \cap L^{\infty}\left(\mathbb{R}^{n}\right)$ and set

$$
u(\vec{x}, t)=\int_{\mathbb{R}^{n}} \Phi(\vec{x}-\vec{y}, t) g(\vec{y}) d \vec{y},
$$

where Φ denotes the fundamental solution for the heat equation. Show that for all $t>0$:
a. $\|u(\cdot, t)\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq\|g\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}$
b. $\|u(\cdot, t)\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq C t^{-n / 2}\|g\|_{L^{1}\left(\mathbb{R}^{n}\right)}$.
c. $\|u(\cdot, t)\|_{L^{1}\left(\mathbb{R}^{n}\right)} \leq\|g\|_{L^{1}\left(\mathbb{R}^{n}\right)}$.
d. $\int_{\mathbb{R}^{n}} u(\vec{x}, t) d \vec{x}=\int_{\mathbb{R}^{n}} g(\vec{x}) d \vec{x}$.
e. $\left\|u_{x_{i}}(\cdot, t)\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq C t^{-1 / 2}\|g\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}$.
f. $\left\|u_{x_{i}}(\cdot, t)\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq C t^{-\frac{n+1}{2}}\|g\|_{L^{1}\left(\mathbb{R}^{n}\right)}$.

