M612 Spring 2020 Assignment 6, due Fri., Feb. 28

1. [10 pts] Let $U \subset \mathbb{R}^n$ be open and let u be a measurable function defined on U. Set

$$U_{u,t} := \{ \vec{x} \in U : |u(\vec{x})| > t \},\$$

and the distribution function of u

$$\delta_u(t) := \mu(U_{u,t});$$

i.e., the Lebesgue measure of $U_{u,t}$. We say u is in the space weak- L^p provided

$$[u]_{L^p} := \left(\sup_{t>0} t^p \delta_u(t)\right)^{1/p}$$

is finite. Compute Reg (weak- L^p).

2. [10 pts] (**Evans 5.10.8.**) Let U be bounded, with a C^1 boundary. Show that a "typical" function $u \in L^p(U)$ $(1 \le p < \infty)$ does not have a trace on ∂U . More precisely, prove there does not exist a bounded linear operator

$$T: L^p(U) \to L^p(\partial U)$$

such that $Tu = u|_{\partial U}$ whenever $u \in C(\overline{U}) \cap L^p(U)$.

3. [10 pts] (Evans 5.10.9.) Integrate by parts to prove the interpolation inequality:

$$||Du||_{L^2} \le C ||u||_{L^2}^{1/2} ||D^2u||_{L^2}^{1/2}$$

for all $u \in C_c^{\infty}(U)$. Assume U is bounded, ∂U is smooth, and prove this inequality if $u \in H^2(U) \cap H^1_0(U)$. (Hint: Take sequences $\{v_k\}_{k=1}^{\infty} \subset C_c^{\infty}(U)$ converging to u in $H^1_0(U)$ and $\{w_k\}_{k=1}^{\infty} \in C^{\infty}(\bar{U})$ converging to u in $H^2(U)$.)

4. [10 pts] (Evans 5.10.10.) Answer the following:

a. Integrate by parts to prove

$$||Du||_{L^p} \le C ||u||_{L^p}^{1/2} ||D^2u||_{L^p}^{1/2}$$

for $2 \leq p < \infty$ and for all $u \in C_c^{\infty}(U)$. Hint:

$$\int_{U} |Du|^{p} d\vec{x} = \sum_{i=1}^{n} \int_{U} u_{x_{i}} u_{x_{i}} |Du|^{p-2} d\vec{x}.$$

b. Prove

$$||Du||_{L^{2p}} \le C ||u||_{L^{\infty}}^{1/2} ||D^{2}u||_{L^{p}}^{1/2}$$

for $1 \le p < \infty$ and all $u \in C_c^{\infty}(U)$.