M612 Spring 2020, Assignment 7, due Fri., Mar. 20

1. [10 pts] Show that if $u \in H_0^1(U)$, with $U = B^o(0,1) \subset \mathbb{R}^n$, then

$$\left| \int_{U} u(\vec{x}) d\vec{x} \right| \le \frac{\alpha(n)^{\frac{1}{2}}}{\sqrt{n(n+2)}} \| Du \|_{L^{2}(U)},$$

where as usual $\alpha(n)$ denotes the volume of a unit ball in \mathbb{R}^n . 2. [10 pts] Let $I = (a, b) \subset \mathbb{R}$ be an interval, and suppose $1 . Show that given any <math>\epsilon > 0$ there exists a constant β_{ϵ} , depending on ϵ and I, so that

$$|u(b)| \leq \beta_{\epsilon} ||u||_{L^{p}(I)} + \epsilon ||u'||_{L^{p}(I)},$$

for all $u \in W^{1,p}(I)$.

3. [10 pts] (Evans 5.10.11.) Suppose U is connected and $u \in W^{1,p}(U)$ satisfies

$$Du = 0$$
 a.e. in U .

Prove u is constant a.e. in U.

Note. This problem is primarily intended to make you look at Theorem 5.8.1, which we won't discuss in class.

4. [10 pts] (Evans 5.10.12.) Show by example that if we have $||D^h u||_{L^1(V)} \leq C$ for all $0 < |h| < \frac{1}{2}$ dist $(V, \partial U)$, it does not necessarily follow that $u \in W^{1,1}(V)$.

Note. If you have trouble thinking of an example, peruse old homework problems.