M612 Spring 2020, Assignment 7, due Fri., Mar. 20

1. [10 pts] Show that if $u \in H_{0}^{1}(U)$, with $U=B^{o}(0,1) \subset \mathbb{R}^{n}$, then

$$
\left|\int_{U} u(\vec{x}) d \vec{x}\right| \leq \frac{\alpha(n)^{\frac{1}{2}}}{\sqrt{n(n+2)}}\|D u\|_{L^{2}(U)}
$$

where as usual $\alpha(n)$ denotes the volume of a unit ball in \mathbb{R}^{n}.
2. [10 pts] Let $I=(a, b) \subset \mathbb{R}$ be an interval, and suppose $1<p<\infty$. Show that given any $\epsilon>0$ there exists a constant β_{ϵ}, depending on ϵ and I, so that

$$
|u(b)| \leq \beta_{\epsilon}\|u\|_{L^{p}(I)}+\epsilon\left\|u^{\prime}\right\|_{L^{p}(I)},
$$

for all $u \in W^{1, p}(I)$.
3. [10 pts] (Evans 5.10.11.) Suppose U is connected and $u \in W^{1, p}(U)$ satisfies

$$
D u=0 \quad \text { a.e. in } U .
$$

Prove u is constant a.e. in U.
Note. This problem is primarily intended to make you look at Theorem 5.8.1, which we won't discuss in class.
4. [10 pts] (Evans 5.10.12.) Show by example that if we have $\left\|D^{h} u\right\|_{L^{1}(V)} \leq C$ for all $0<|h|<\frac{1}{2}$ dist $(V, \partial U)$, it does not necessarily follow that $u \in W^{1,1}(V)$.
Note. If you have trouble thinking of an example, peruse old homework problems.

