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Reference Material

Most texts on second order elliptic PDE are indebted to one extent
or another to the standard reference, “Elliptic partial differential
equations of second order,” by David Gilbarg and Neil Trudinger.
This is true of Evans’s book, and it’s also a resource I’ll use for
some of our material.



Second Order Elliptic PDE

For U ⊂ Rn open and bounded, we’ll be interested in PDE of the
form

Lu = f in U

u = g on ∂U,

where L has either the divergence form

Lu = −
n∑

i ,j=1

(aijuxi )xj +
n∑

i=1

biuxi + cu,

or the non-divergence form

Lu = −
n∑

i ,j=1

aijuxixj +
n∑

i=1

biuxi + cu.



Second Order Elliptic PDE

Notes. 1. Our standard example from last semester was
Lu = −∆u, for which aij = δij (the Kronecker delta function),
bi = 0 for all i ∈ {1, 2, . . . n}, c = 0.

2. If aij ∈ C 1(U), it’s easy to convert from one form to the other.
For example, if L is originally in non-divergence form, we can write

Lu = −
n∑

i ,j=1

aijuxixj +
n∑

i=1

biuxi + cu

= −
n∑

i ,j=1

(aijuxi )xj +
n∑

i ,j=1

aijxjuxi +
n∑

i=1

biuxi + cu

= −
n∑

i ,j=1

(aijuxi )xj +
n∑

i=1

(
bi +

n∑
j=1

aijxj

)
uxi + cu,

which is in divergence form with bi replaced by
b̃i =

(
bi +

∑n
j=1 a

ij
xj

)
. (Converting in the other direction is similar.)
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3. We’ll find that the divergence form is better suited for
developing energy estimates, while non-divergence form is better
suited for maximum principle techniques.

4. As noted in our discussion of PDE classification last semester, if
u ∈ C 2(U), we can take aij = aji without loss of generality. In the
current setting, we’ll take this symmetry as an assumption. Recall
that in this setting if we let A denote the matrix with components
(aij), then L is called elliptic at a point ~x ∈ U provided the
eigenvalues of A(~x) all have the same sign.



Second Order Elliptic PDE

5. If we use the notation A = (aij) and ~b = (b1 b2 . . . bn), then we
can express the divergence and non-divergence forms of L in the
index-free forms

Lu = −∇ · ((Du)A) + ~b · Du + cu (Divergence form)

Lu = − A : D2u + ~b · Du + cu (Non-divergence form).

Here,

A : B :=
n∑

i ,j=1

aijbij .



Uniform Ellipticity

Definition. We say that L (either form) is uniformly elliptic in U if
there exists a constant θ > 0 so that

n∑
i ,j=1

aij(~x)ξiξj ≥ θ|~ξ|2

for a.e. ~x ∈ U and all ~ξ ∈ Rn. I.e.,

~ξTA~ξ ≥ θ|~ξ|2.

Notes. 1. For the Laplacian, A = I , so ~ξTA~ξ = |~ξ|2, and we see
that θ = 1.

2. More generally, according to the min-max principle for matrices,
this condition asserts that for a.e. ~x ∈ U the eigenvalues of A(~x)
are all bounded below by θ. In this way, uniform ellipticity implies
ellipticity.



Weak Solutions

First, suppose u is a classical solution of the divergence-form
problem

Lu = −
n∑

i ,j=1

(aijuxi )xj +
n∑

i=1

biuxi + cu = f . (*)

If we multiply this equation by v ∈ C∞c (U) and integrate the first
sum by parts, we obtain the relation∫

U

{ n∑
i ,j=1

aijuxi vxj +
n∑

i=1

biuxi v + cuv
}
d~x =

∫
U
fvd~x .

This motivates our week formulation of (*). For this, we will
assume aij , bi , c ∈ L∞(U) for all i , j ∈ {1, 2, . . . , n}, and
f ∈ L2(U).



Weak Solutions

Definitions.

(i) We specify the bilinear form

B[u, v ] :=

∫
U

{ n∑
i ,j=1

aijuxi vxj +
n∑

i=1

biuxi v + cuv
}
d~x .

(ii) We say that u ∈ H1
0 (U) is a weak solution of the divergence

form equation

Lu = f in U

u = 0 on ∂U,

if B[u, v ] = (f , v) for all v ∈ H1
0 (U). Here, (·, ·) denotes L2(U)

inner product.



Weak Solutions

Notes. 1. Clearly, any classical solution is a weak solution
(assuming the PDE makes sense classically).

2. It’s customary to continue referring to the strong formulation of
a PDE, even when discussing weak solutions, and that’s often what
we’ll do. I.e., we’ll write things like u ∈ H1

0 (U) satisfies

∆u = f ,

even though u may not have weak derivatives to second order.



Weak Solutions

3. More generally, if f ∈ H−1(U) and u ∈ H1
0 (U) satisfies

B[u, v ] = 〈f , v〉

for all v ∈ H1
0 (U), we’ll write

Lu = f 0 −
n∑

i=1

f ixi in U

u = 0 on ∂U,

where we recall 〈f , v〉 =
∫
U f 0v +

∑n
i=1 f

ivxid~x .



Weak Solutions

4. Suppose f ∈ L2(U), g ∈ L2(∂U), and ∂U is C 1. We say that
u ∈ H1(U) is a weak solution of

Lu = f in U

u = g on ∂U,

if
B[u, v ] = (f , v)

for all v ∈ H1
0 (U) and u is equal to g on ∂U in the trace sense:

Tu = g , where T is the trace operator from Theorem 5.5.1.
Similarly as in Note 3, we can extend this to f ∈ H−1(U).



Weak Solutions

5. Suppose that in Note 4 we can find w ∈ H1(U) so that
Tw = g . We can set ũ = u − w so that ũ is a weak solution of

Lũ = f − Lw in U

ũ = 0 on ∂U.

Here, Lw doesn’t make sense in the strong formulation, but we
mean Lw ∈ H−1(U) in the sense that

〈Lw , v〉 = B[w , v ] ∀ v ∈ H1
0 (U).

I.e., in the weak formulation we have

B[ũ, v ] =B[u − w , v ] = B[u, v ]− B[w , v ]

= (f , v)− B[w , v ].


