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The Fredholm Alternative for Elliptic Operators

Theorem 6.2.4. Suppose U ⊂ Rn is open and bounded, aij , bi ,
c ∈ L∞(U) (∀ i , j ∈ {1, 2, . . . n}), and L is uniformly elliptic. Then:

(i) Precisely one of the following two statements must be true:

(α) For each f ∈ L2(U), the PDE

Lu = f ; in U

u = 0; on ∂U,

has a unique weak solution u ∈ H1
0 (U); or

(β) The homogeneous PDE

Lu = 0; in U

u = 0; on ∂U,

has a non-trivial weak solution u ∈ H1
0 (U).
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(ii) In the event of (β), let N denote the solution space of the
equation in (β), and let N∗ denote the solution space of

L∗v = 0; in U

v = 0; on ∂U.

Then dim N = dim N∗, and the mutual value is finite.

(iii) The equation in (α) has a weak solution u ∈ H1
0 (U) if and only

if
(f , v) = 0, ∀ v ∈ N∗.

I.e., if f ∈ (N∗)⊥.



Proof of Theorem 6.2.4

1. Our strategy will be to apply the Fredholm Alternative for
compact operators, so the first thing we’ll need to do is identify an
appropriate compact operator. To this end, let γ ≥ 0 be as in
Theorem 6.2.2, so that for some β > 0 we have the lower bound

B[u, u] ≥ β‖u‖2H1(U) − γ‖u‖
2
L2(U).

Set
Bγ [u, v ] := B[u, v ] + γ(u, v),

and
Lγu := Lu + γu.

We saw in Theorem 6.2.3 that for each g ∈ L2(U) there exists a
unique u ∈ H1

0 (U) so that

Bγ [u, v ] = (g , v), ∀ v ∈ H1
0 (U).
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We’ll denote the corresponding map taking g ∈ L2(U) to
u ∈ H1

0 (U) by L−1
γ . I.e., L−1

γ : L2(U)→ H1
0 (U) is specified by

u = L−1
γ g so that

Bγ [L
−1
γ g , v ] = (g , v), ∀ v ∈ H1

0 (U).

Aside from a choice of scale, L−1
γ , viewed as a map

L2(U)→ L2(U), will be the compact operator we’re looking for.

2. Now, u ∈ H1
0 (U) is a unique solution to the equation in (α) if

and only if u uniquely solves

B[u, v ] = (f , v), ∀ v ∈ H1
0 (U),

and this can be expressed in terms of Bγ [u, v ] as

Bγ [u, v ] = (f + γu, v), ∀ v ∈ H1
0 (U).
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In our notation from Step 1,

u = L−1
γ (f + γu) = L−1

γ f + γL−1
γ u.

Let’s set h = L−1
γ f ∈ H1

0 (U) and K = γL−1
γ . We see that

u ∈ H1
0 (U) is a unique solution to the equation in (α) if and only if

u uniquely solves
u − Ku = h.

3. Claim. If we regard K as a map K : L2(U)→ L2(U), then K is
compact.

To see this, we first observe that for any g ∈ L2(U), the unique
u ∈ H1

0 (U) satisfying

Bγ [u, v ] = (g , v), ∀ v ∈ H1
0 (U),

must also (by the coercivity of Bγ [u, v ]) satisfy

β‖u‖2H1(U) ≤Bγ [u, u] = (g , u)
c.s.
≤ ‖g‖L2(U)‖u‖L2(U)



Proof of Theorem 6.2.4

We see that

β‖u‖2H1(U) ≤ ‖g‖L2(U)‖u‖L2(U) ≤ ‖g‖L2(U)‖u‖H1(U),

and so
‖u‖H1(U) ≤

1
β
‖g‖L2(U).

We can write this as

‖L−1
γ g‖H1(U) ≤

1
β
‖g‖L2(U),

or equivalently
‖Kg‖H1(U) ≤

γ

β
‖g‖L2(U).

We see that K : L2(U)→ H1
0 (U) is a bounded linear operator.
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Next, since Reg(L2) < Reg(H1) (strictly), we have the compact
embedding H1

0 (U) ⊂⊂ L2(U). I.e., bounded subsets of H1
0 (U) are

precompact in L2(U).

Since K is bounded, it maps bounded subsets of L2(U) into
bounded subsets of H1

0 (U), and by compact embedding, bounded
subsets of H1

0 (U) are precompact in L2(U). We see that K maps
bounded subsets of L2(U) into precompact subsets of L2(U), and
so K is compact.

4. The Fredholm alternative for compact operators asserts: either

(A) for each h ∈ L2(U), u − Ku = h has a unique solution
u ∈ L2(U); or

(B) u − Ku = 0 has a non-trivial solution u ∈ L2(U).
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Notice that in the current setting, with h ∈ H1
0 (U) and

K : L2(U)→ H1
0 (U), the solutions described in (A) and (B) are all

in H1
0 (U).

Also, keep in mind that (α) and (β) are necessarily mutually
exclusive, so we only need to check that at least one of them
always holds (i.e., it’s clear that they cannot both hold).

We’ve already seen that if (A) holds then (α) will hold (and so (β)
will not). Notice that this necessarily includes the case γ = 0,
because (B) cannot hold in that case (since K = γL−1

γ , if γ = 0
the equation in (B) is u = 0).

Likewise, if (B) holds, then the non-trivial solutions to u − Ku = 0
will satisfy the homogeneous equation in (β), and so (β) will hold
(and so (α) will not). This completes the proof of (i).
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For (ii), if (β) holds, then (B) must hold, and N (the solution space
for the homogeneous equation in (β)) will be the solution space of
the homogenous problem u − Ku = 0.

According to Theorem A.D.5 (the Fredholm Alternative for
compact operators, discussed in the previous lecture), dim N is
finite (Item (i) of Theorem A.D.5) and dim N = dim N∗, where N∗

denotes the dimension of the solution space of the homogeneous
problem u − K ∗u = 0 (Item (v) of Theorem A.D.5).

In order to conclude (ii), we need to be clear about the relationship
between K ∗ and the formal adjoint L∗.
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Claim. If L∗ denotes the formal adjoint of L, and we set
L∗γ := L∗ + γ, then K ∗ = γL∗−1

γ .

To see this, we first recall from Step 1 that for any g ∈ L2(U) we
can find a unique u ∈ H1

0 (U) so that

Bγ [u, v ] = (g , v), ∀ v ∈ H1
0 (U), i.e., u = L−1

γ g .

Proceeding in exactly the same way, we can show that given any
g̃ ∈ L2(U) we can find a unique ũ ∈ H1

0 (U) so that

B∗γ [ũ, ṽ ] = (g̃ , ṽ), ∀ṽ ∈ H1
0 (U), i.e., ũ = L∗−1

γ g̃ .

Recalling the defining relation B∗γ [ũ, ṽ ] := Bγ [ṽ , ũ], we can take
ṽ = u and v = ũ to see that

(g̃ , u) = B∗γ [ũ, u] = Bγ [u, ũ] = (g , ũ).



Proof of Theorem 6.2.4

From the previous slide,

(g̃ , u) = B∗γ [ũ, u] = Bγ [u, ũ] = (g , ũ).

We have u = L−1
γ g and ũ = L∗−1

γ g̃ so that

(g̃ , L−1
γ g) = (g , L∗−1

γ g̃)
sym
= (L∗−1

γ g̃ , g), ∀ g , g̃ ∈ L2(U).

Recalling that K = γL−1
γ , we see that K ∗ = γL∗−1

γ , establishing the
claim.

It follows, precisely as for Lγ and K , that N∗ (the solution space for
the adjoint homogeneous problem in (ii)) will be the solution space
for u − K ∗u = 0. This completes the proof of (ii).
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5. For (iii), in the case that (α) holds, we have N∗ = {0} (so that
(N∗)⊥ = L2(U)), and so (iii) simply agrees with (α).

In the case that (β) holds, we must have that (B) holds, and from
Theorem A.D.5 we know that we can solve

u − Ku = h

if and only if
h ∈ N(I − K ∗)⊥;

that is, if and only if (h, v) = 0 for all v satisfying

v − K ∗v = 0.
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Recalling that h = L−1
γ f , we can compute

0 =(h, v) = (L−1
γ f , v) =

1
γ
(Kf , v)

=
1
γ
(f ,K ∗v) =

1
γ
(f , v).

I.e., f ∈ (N∗)⊥ if and only if h ∈ (N∗)⊥, so the equation in (α) has
a solution if and only if f ∈ (N∗)⊥ , and this is (iii).

Here, we’ve used the fact that in case (B) we have γ > 0, and in
the final equality we used K ∗v = v . �


