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Spectral Theory for Compact Operators

Suppose X denotes a real Banach space and A : X → X denotes a
bounded linear operator.

Definitions.

(i) The resolvent set of A is defined as

ρ(A) := {η ∈ R : (A− ηI ) : X → X is bijective}.

In particular, for η ∈ ρ(A), RA(η) := (A− ηI )−1 is a bounded linear
operator, referred to as the resolvent of A at η.

(ii) The spectrum of A is defined as

σ(A) := R\ρ(A).

(Here, we use R because our Banach space is real.)



Spectral Theory for Compact Operators

(iii) We denote by σp(A) the point spectrum (or eigenvalues) of A,
by which we mean the η ∈ R so that N(A− ηI ) 6= {0}. (I.e.,
A− ηI is not injective.)

(iv) If η ∈ σp(A) and (A− ηI )w = 0 for some w 6= 0 (i.e.,
w ∈ N(A− ηI )\{0}), then we say w is an eigenvector of η.

Theorem A.D.6. Suppose H is a real infinite-dimensional Hilbert
space, and K : H → H is compact. Then:

(i) 0 ∈ σ(K )

(ii) σ(K )\{0} = σp(K )\{0}

(iii) Either σ(K ) is finite or σ(K )\{0} is a countable sequence
tending toward 0.



The Resolvent for Elliptic Operators

Theorem 6.2.5. Suppose U ⊂ Rn is open and bounded, aij , bi ,
c ∈ L∞(U) (∀ i , j ∈ {1, 2, . . . n}), and L is uniformly elliptic. Then:

(i) There exists a set Σ ⊂ R, at most countable, so that

Lu =λu + f , in U

u = 0, on ∂U,

has a unique weak solution u ∈ H1
0 (U) for each f ∈ L2(U) if and

only if λ /∈ Σ.

(ii) If Σ from (i) is infinite, then its elements Σ = {λk}∞k=1 can be
arranged in a nondecreasing sequence so that

lim
k→∞

λk = +∞.



The Resolvent for Elliptic Operators

Note. Item (i) asserts that for each λ /∈ Σ, the operator

L− λI : H1
0 (U)→ L2(U)

is a bijection, and correspondingly so is the resolvent operator

RL(λ) := (L− λI )−1 : L2(U)→ H1
0 (U).



Proof of Theorem 6.2.5

1. Let γ be as in Theorem 6.2.2, so that

B[u, u] ≥ β‖u‖2H1(U) − γ‖u‖
2
L2(U), ∀ u ∈ H1

0 (U).

Notice that if γ satisfies this estimate, then any value larger than γ
also works. Using this, we can take γ > 0 without loss of generality.

Recall from Theorem 6.2.3 that if µ = −λ ≥ γ, then the equation
in Item (i) has a unique weak solution u ∈ H1

0 (U) for each
f ∈ L2(U). I.e., we see immediately that if λ ≤ −γ, then λ /∈ Σ.

We are left to consider λ > −γ.



Proof of Theorem 6.2.5

2. For any λ > −γ, we’ll apply Theorem 6.2.4 (the Fredholm
Alternative) to L− λI . According to Theorem 6.2.4, the equation

Lu − λu = f , in U

u = 0, on ∂U

can be uniquely solved for all f ∈ L2(U) if and only if u = 0 is the
only weak solution of

Lu − λu = 0, in U

u = 0, on ∂U.

If we add γu to both sides of this latter equation, we see that it’s
equivalent to

Lu + γu = (γ + λ)u, in U

u = 0, on ∂U. (*)



Proof of Theorem 6.2.5

If we now let K = γL−1
γ be as in the proof of Theorem 6.2.4, then

we can express solutions of (*) as

u = L−1
γ [(γ + λ)u] =

γ + λ

γ
Ku. (**)

More precisely, u ∈ H1
0 (U) solves (*) if and only if it solves (**).

We see that (**) is just an eigenvalue problem for the compact
operator K ,

Ku =
γ

γ + λ
u.

This allows us to apply Theorem A.D.6. It asserts that the
allowable values of the ratio γ

γ+λ form a set that is at most
countable and tends to 0. Recall that we’re taking λ > −γ, so
these allowable values are all positive.



Proof of Theorem 6.2.5

The allowable values of γ
γ+λ can be expressed as

µk =
γ

γ + λk
,

and either the collection {µk} is finite or the collection is countable
and

lim
k→∞

µk = 0.

In the former case, the collection Σ = {λk} is finite, while in the
latter case it is countable with

lim
k→∞

λk = +∞.

By a choice of ordering, we can take the set {λk} to be
nondecreasing. �
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Notes. 1. We saw in Step 2 of the proof that if λ ∈ Σ, then there
exists a solution u ∈ H1

0 (U)\{0} to the equation

Lu − λu = 0, in U

u = 0, on ∂U. (*)

I.e., Σ = σp(L).

2. We can proceed similarly in the case that we take H1
0 (U) to be a

complex Hilbert space. In that case, Item (i) of Theorem 6.2.5
holds precisely as stated for some (at most) countable set Σ ⊂ C,
and Item (ii) holds with

lim
k→∞

|λk | = +∞.
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3. Even if we take H1
0 (U) to be a complex Hilbert space, the

eigenvalues of L are confined to R in many important cases. For
example, the eigenvalues associated with the Laplacian operator
L = −∆ are confined to R, and more generally this is the case for
operators of the form

Lu = −
n∑

i ,j=1

(aijuxi )xj + cu,

with aij = aji for all i , j ∈ {1, 2, . . . , n}.



The Resolvent for Elliptic Operators

Theorem 6.2.6. Suppose U ⊂ Rn is open and bounded, aij , bi ,
c ∈ L∞(U) (∀ i , j ∈ {1, 2, . . . n}), and L is uniformly elliptic. For Σ
as in Theorem 6.2.5, if λ /∈ Σ then there exists a constant C so
that for any f ∈ L2(U) and corresponding (uniquely defined) weak
solution u ∈ H1

0 (U) to

Lu =λu + f , in U

u = 0, on ∂U,

we have the inequality

‖u‖L2(U) ≤ C‖f ‖L2(U).

The constant C depends only on λ, U, and the coefficients of L.
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Note. In particular, this theorem states that for all λ /∈ Σ, the
resolvent operator

RL(λ) := (L− λI )−1,

is bounded as a map RL(λ) : L2(U)→ L2(U).



Proof of Theorem 6.2.6

Suppose not. Then for some λ /∈ Σ we can find sequences
{ũm}∞m=1 ⊂ H1

0 (U) and {f̃m}∞m=1 ⊂ L2(U) so that

Lũm =λũm + f̃m, in U

ũm = 0, on ∂U,

in the weak sense, but

‖ũm‖L2(U) > m‖f̃m‖L2(U)

for all m = 1, 2, . . . .



Proof of Theorem 6.2.6

By a choice of scaling,

um :=
ũm

‖ũm‖L2(U)
, fm =

f̃m
‖ũm‖L2(U)

,

we can take {um}∞m=1 and {fm}∞m=1 to satisfy

Lum =λum + fm, in U

um = 0, on ∂U,

in the weak sense, with ‖um‖L2(U) = 1 and

‖um‖L2(U) > m‖fm‖L2(U)

for all m = 1, 2, . . . .

Since ‖um‖L2(U) = 1 for all m = 1, 2, . . . . , we see that
‖fm‖L2(U) <

1
m → 0 as m→∞.



Proof of Theorem 6.2.6

Let’s check that the sequence {um}∞m=1 is bounded in H1
0 (U).

If B[u, v ] denotes the bilinear form associated with L, then from
Theorem 6.2.2 we have the usual lower bound estimate

B[um, um] ≥ β‖um‖2H1(U) − γ‖um‖
2
L2(U), ∀m = 1, 2, . . . .

This allows us to write

β‖um‖2H1(U) − γ‖um‖
2
L2(U) − λ‖um‖

2
L2(U) ≤ B[um, um]− λ(um, um)

= (fm, um) ≤ ‖fm‖L2(U)‖um‖L2(U),

and using ‖um‖L2(U) = 1,

β‖um‖2H1(U) ≤ (γ + λ) +
1
m
.

We see that {um}∞m=1 is bounded in H1
0 (U).



Proof of Theorem 6.2.6

Since H1
0 (U) is reflexive, we can conclude from Theorem A.D.3

that there exists a subsequence {umj}∞j=1 ⊂ {um}∞m=1 so that

umj ⇀ u in H1
0 (U).

Also, since H1
0 (U) ⊂⊂ L2(U), we can extract a further subsequence

of {umj}∞j=1 (though let’s continue to use {umj}∞j=1), so that

umj → u in L2(U).

(By uniqueness of weak limits, and the fact that strong
convergence implies weak convergence, the the limits must agree.)
Notice particularly that since ‖umj‖L2(U) = 1 for all j ∈ {1, 2, . . . },
we must have ‖u‖L2(U) = 1.

For each j ∈ {1, 2, . . . }, umj satisfies the weak problem

B[umj , v ]− λ(umj , v) = (fmj , v), ∀ v ∈ H1
0 (U).



Proof of Theorem 6.2.6

For each v ∈ H1
0 (U), the maps

umj 7→B[umj , v ]

umj 7→ (umj , v)

are bounded linear operators on H1
0 (U), so by weak convergence we

have the limits

lim
j→∞

B[umj , v ] =B[u, v ]

lim
j→∞

(umj , v) = (u, v).

In addition,

lim
j→∞
|(fmj , v)| ≤ lim

j→∞
‖fmj‖L2(U)‖v‖L2(U) ≤ lim

j→∞

‖v‖L2(U)

mj
= 0.



Proof of Theorem 6.2.6

If we take j →∞ in

B[umj , v ]− λ(umj , v) = (fmj , v), ∀ v ∈ H1
0 (U),

we obtain
B[u, v ]− λ(u, v) = 0 ∀ v ∈ H1

0 (U).

I.e., u is a weak solution of

Lu =λu, in U

u = 0, on ∂U.

Since λ /∈ Σ, we know from Theorem 6.2.5 that u is uniquely
defined, and since 0 is clearly a solution, this means u = 0. But this
contradicts our observation that ‖u‖L2(U) = 1, and so contradicts
our original assumption that there exists a value λ /∈ Σ for which
the claimed estimate doesn’t hold. �


