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Spectral Theory for Compact Operators

Suppose X denotes a real Banach space and A: X — X denotes a
bounded linear operator.

Definitions.
(i) The resolvent set of A is defined as
p(A)={neR: (A—nl): X — X is bijective}.

In particular, for € p(A), Ra(n) := (A—nl)~1 is a bounded linear
operator, referred to as the resolvent of A at 7.

(ii) The spectrum of A is defined as
o(A) = R\p(A).

(Here, we use R because our Banach space is real.)



Spectral Theory for Compact Operators

(iii) We denote by o,(A) the point spectrum (or eigenvalues) of A,
by which we mean the n € R so that N(A —nl) # {0}. (l.e.,
A — nl is not injective.)

(iv) If n € op(A) and (A —nl)w = 0 for some w # 0 (i.e.,
w € N(A —nl)\{0}), then we say w is an eigenvector of 7.

Theorem A.D.6. Suppose H is a real infinite-dimensional Hilbert
space, and K : H — H is compact. Then:

(i) 0 € o(K)
(i)) o(K)\{0} = op(K)\{0}

(iii) Either o(K) is finite or o(K)\{0} is a countable sequence
tending toward 0.



The Resolvent for Elliptic Operators

Theorem 6.2.5. Suppose U C R” is open and bounded, a¥, b,
ceL>®) (Vi,je{1,2,...n}), and L is uniformly elliptic. Then:

(i) There exists a set ¥ C R, at most countable, so that

Lu=Xu+f, inU
u=0, ondU,

has a unique weak solution u € H}(U) for each f € L2(U) if and
only if A\ ¢ X.

(ii) If X from (i) is infinite, then its elements 3 = {A,}22; can be
arranged in a nondecreasing sequence so that

lim )\k = +4o0.
k—o0
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Note. Item (i) asserts that for each A ¢ ¥, the operator
L—\:H}U) — L2(U)
is a bijection, and correspondingly so is the resolvent operator

RL(A) == (L—=XN"Y: [2(U) — HA(U).



Proof of Theorem 6.2.5

1. Let v be as in Theorem 6.2.2, so that
Blu,u] > /B”UH%-/l(U) - 7||u||%2(U)’ Vu e Hy(U).

Notice that if v satisfies this estimate, then any value larger than ~
also works. Using this, we can take v > 0 without loss of generality.

Recall from Theorem 6.2.3 that if x = —\ > ~, then the equation
in Item (i) has a unique weak solution u € H}(U) for each
f € L2(U). le., we see immediately that if A < —v, then \ ¢ L.

We are left to consider A > —~.



Proof of Theorem 6.2.5

2. For any A > —~, we'll apply Theorem 6.2.4 (the Fredholm
Alternative) to L — A\l. According to Theorem 6.2.4, the equation
Lu—Xu=f, inU

u=0, ondU
can be uniquely solved for all f € L2(U) if and only if u = 0 is the
only weak solution of

Lu—Au=0, inU

u=0, ondU.
If we add ~u to both sides of this latter equation, we see that it's
equivalent to

Lu+~vyu=(y+Au, inU
u=0, onJU. (*)



Proof of Theorem 6.2.5

If we now let K = yL;l be as in the proof of Theorem 6.2.4, then
we can express solutions of (*) as

— ’L/\ (*¥*)

More precisely, u € H3(U) solves (*) if and only if it solves (**).

u= L7+ el

We see that (**) is just an eigenvalue problem for the compact

operator K,
gl

= mu.
This allows us to apply Theorem A.D.6. It asserts that the
allowable values of the ratio % form a set that is at most
countable and tends to 0. Recall that we're taking A > —~, so
these allowable values are all positive.

Ku



Proof of Theorem 6.2.5

The allowable values of ﬁ can be expressed as
__7
v+ Ak
and either the collection {/} is finite or the collection is countable
and

Mk

lim MK = 0.
k—o00
In the former case, the collection ¥ = {\} is finite, while in the
latter case it is countable with
lim )\k = 400.
k—ro0
By a choice of ordering, we can take the set {\s} to be
nondecreasing. O
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Notes. 1. We saw in Step 2 of the proof that if A € ¥, then there
exists a solution u € H3(U)\{0} to the equation

Lu—Au=0, inU
u=0, ondU. (*)
le., X =0op(L).

2. We can proceed similarly in the case that we take H}(U) to be a
complex Hilbert space. In that case, Item (i) of Theorem 6.2.5
holds precisely as stated for some (at most) countable set ¥ C C,
and Item (ii) holds with

lim ‘)\k’ = 400.
k— o0
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3. Even if we take H3(U) to be a complex Hilbert space, the
eigenvalues of L are confined to R in many important cases. For
example, the eigenvalues associated with the Laplacian operator
L = —A are confined to R, and more generally this is the case for
operators of the form
n
Lu=— Z(a Ux; )x; + cu,
ij=1
with a¥ = &/ for all i,j € {1,2,...,n}.
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Theorem 6.2.6. Suppose U C R” is open and bounded, a¥, b,
ceL>®) (Vi,je{L1,2,...n}), and L is uniformly elliptic. For
as in Theorem 6.2.5, if A ¢ ¥ then there exists a constant C so
that for any f € L2(U) and corresponding (uniquely defined) weak
solution u € H}(U) to
Lu=Xu+f, inU
u=0, ondU,

we have the inequality

ull 2y < ClIfll2vy-
The constant C depends only on A, U, and the coefficients of L.
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Note. In particular, this theorem states that for all A ¢ ¥, the
resolvent operator

Ri(\) :=(L— X1,

is bounded as a map R.(\) : L2(U) — L2(U).



Proof of Theorem 6.2.6

Suppose not. Then for some A ¢ ¥ we can find sequences
{[]m}(,)nozl C H&(U) and {fm}(,)nozl (- L2(U) SO that

Ijm 207 on 8U’

in the weak sense, but
dmlli2(0) > Ml fmll 20y

forallm=1,2,....



Proof of Theorem 6.2.6

By a choice of scaling,
fim Fm

fm

U : = —0
[ dmll 2(v)

~ lamlliw)
we can take {um}7° 1 and {f,}55_; to satisfy
Lupm =Aupm + fyy,  in U
um =0, ondU,
in the weak sense, with [|um|[;2(y) = 1 and
HUmHLz(U) > memHB(U)

forallm=1,2,....

Since [|um||;2(yy =1 forallm=1,2,.... , we see that
[ fmll2(uy < L 5 0asm— .



Proof of Theorem 6.2.6

Let's check that the sequence {um,}S5_; is bounded in H}(U).

If B[u, v] denotes the bilinear form associated with L, then from
Theorem 6.2.2 we have the usual lower bound estimate

Blum, tm] > BlltmlZn gy = VumlZeuy ¥m=1.2,....
This allows us to write
BHUmH%—/l(m _'Y||Um||%2( )\||Um||L2 < Blum, um] — A(tm, tum)
= (fm, um) < Hfm”L2(U)”UmHL2(U)v

and using [|um|| 2y = 1,

1
Bllumlliaqwy < (v +2) + —.

We see that {up,}5S_; is bounded in H3(U).



Proof of Theorem 6.2.6

Since H3(U) is reflexive, we can conclude from Theorem A.D.3
that there exists a subsequence {upm, }?2; C {um}7—; so that

Um; = U in H3 (V).

Also, since H3(U) CC L%(U), we can extract a further subsequence
of {um, }72; (though let's continue to use {um,}7°;), so that

Um, —> U in L2(U).

(By uniqueness of weak limits, and the fact that strong
convergence implies weak convergence, the the limits must agree.)
Notice particularly that since |[um, |2y =1 for all j € {1,2,...},
we must have [|uf| 2y =1

For each j € {1,2,...}, um, satisfies the weak problem

B[umj,V]—A(Umj,V):(fmj,V), Vv e H(:)l(U)



Proof of Theorem 6.2.6

For each v € H}(U), the maps

Um; — Blum,, v]

Um; = (Um;, V)
are bounded linear operators on H3(U), so by weak convergence we
have the limits

lim Blum,;, v] = Blu, V]
Jj—o0 J

lim (um;, v) = (u, v).
j—o0
In addition,
||VHL2(U) .
ITIJ' o

(fmj V)| Sjl_i)rgo||fmj||L2(U)||V||L2(U) Sjl_ig)‘o 0.

lim |
j—oo



Proof of Theorem 6.2.6

If we take j — oo in
B[Umpv]_)‘(umjvv):(fmjvv)> Vv e H(%(U)’
we obtain
Blu,v] — Mu,v) =0 Vv e Hi(U).

l.e., uis a weak solution of

Lu=MAu, inU
u=0, ondU.

Since A ¢ ¥, we know from Theorem 6.2.5 that v is uniquely
defined, and since 0 is clearly a solution, this means u = 0. But this
contradicts our observation that [|u||;2(yy = 1, and so contradicts
our original assumption that there exists a value A ¢ ¥ for which
the claimed estimate doesn’t hold. O



