Second Order Elliptic PDE: The Resolvent
 Operator

MATH 612, Texas A\&M University

Spring 2020

Spectral Theory for Compact Operators

Suppose X denotes a real Banach space and $A: X \rightarrow X$ denotes a bounded linear operator.

Definitions.

(i) The resolvent set of A is defined as

$$
\rho(A):=\{\eta \in \mathbb{R}:(A-\eta I): X \rightarrow X \text { is bijective }\} .
$$

In particular, for $\eta \in \rho(A), R_{A}(\eta):=(A-\eta I)^{-1}$ is a bounded linear operator, referred to as the resolvent of A at η.
(ii) The spectrum of A is defined as

$$
\sigma(A):=\mathbb{R} \backslash \rho(A)
$$

(Here, we use \mathbb{R} because our Banach space is real.)

Spectral Theory for Compact Operators

(iii) We denote by $\sigma_{p}(A)$ the point spectrum (or eigenvalues) of A, by which we mean the $\eta \in \mathbb{R}$ so that $N(A-\eta I) \neq\{0\}$. (I.e., $A-\eta l$ is not injective.)
(iv) If $\eta \in \sigma_{p}(A)$ and $(A-\eta I) w=0$ for some $w \neq 0$ (i.e., $w \in N(A-\eta I) \backslash\{0\})$, then we say w is an eigenvector of η.

Theorem A.D.6. Suppose H is a real infinite-dimensional Hilbert space, and $K: H \rightarrow H$ is compact. Then:
(i) $0 \in \sigma(K)$
(ii) $\sigma(K) \backslash\{0\}=\sigma_{p}(K) \backslash\{0\}$
(iii) Either $\sigma(K)$ is finite or $\sigma(K) \backslash\{0\}$ is a countable sequence tending toward 0 .

The Resolvent for Elliptic Operators

Theorem 6.2.5. Suppose $U \subset \mathbb{R}^{n}$ is open and bounded, $a^{i j}, b^{i}$, $c \in L^{\infty}(U)(\forall i, j \in\{1,2, \ldots n\})$, and L is uniformly elliptic. Then:
(i) There exists a set $\Sigma \subset \mathbb{R}$, at most countable, so that

$$
\begin{aligned}
L u & =\lambda u+f, \quad \text { in } U \\
u & =0, \quad \text { on } \partial U,
\end{aligned}
$$

has a unique weak solution $u \in H_{0}^{1}(U)$ for each $f \in L^{2}(U)$ if and only if $\lambda \notin \Sigma$.
(ii) If Σ from (i) is infinite, then its elements $\Sigma=\left\{\lambda_{k}\right\}_{k=1}^{\infty}$ can be arranged in a nondecreasing sequence so that

$$
\lim _{k \rightarrow \infty} \lambda_{k}=+\infty
$$

The Resolvent for Elliptic Operators
Note. Item (i) asserts that for each $\lambda \notin \Sigma$, the operator

$$
L-\lambda I: H_{0}^{1}(U) \rightarrow L^{2}(U)
$$

is a bijection, and correspondingly so is the resolvent operator

$$
R_{L}(\lambda):=(L-\lambda I)^{-1}: L^{2}(U) \rightarrow H_{0}^{1}(U)
$$

Proof of Theorem 6.2.5

1. Let γ be as in Theorem 6.2.2, so that

$$
B[u, u] \geq \beta\|u\|_{H^{1}(U)}^{2}-\gamma\|u\|_{L^{2}(U)}^{2}, \quad \forall u \in H_{0}^{1}(U) .
$$

Notice that if γ satisfies this estimate, then any value larger than γ also works. Using this, we can take $\gamma>0$ without loss of generality.

Recall from Theorem 6.2 .3 that if $\mu=-\lambda \geq \gamma$, then the equation in Item (i) has a unique weak solution $u \in H_{0}^{1}(U)$ for each $f \in L^{2}(U)$. I.e., we see immediately that if $\lambda \leq-\gamma$, then $\lambda \notin \Sigma$.

We are left to consider $\lambda>-\gamma$.

Proof of Theorem 6.2.5

2. For any $\lambda>-\gamma$, we'll apply Theorem 6.2.4 (the Fredholm Alternative) to $L-\lambda I$. According to Theorem 6.2.4, the equation

$$
\begin{aligned}
L u-\lambda u & =f, & & \text { in } U \\
u & =0, & & \text { on } \partial U
\end{aligned}
$$

can be uniquely solved for all $f \in L^{2}(U)$ if and only if $u=0$ is the only weak solution of

$$
\begin{aligned}
L u-\lambda u & =0, & & \text { in } U \\
u & =0, & & \text { on } \partial U .
\end{aligned}
$$

If we add γu to both sides of this latter equation, we see that it's equivalent to

$$
\begin{align*}
L u+\gamma u & =(\gamma+\lambda) u, \quad \text { in } U \\
u & =0, \quad \text { on } \partial U . \tag{*}
\end{align*}
$$

Proof of Theorem 6.2.5

If we now let $K=\gamma L_{\gamma}^{-1}$ be as in the proof of Theorem 6.2.4, then we can express solutions of $\left({ }^{*}\right)$ as

$$
\begin{equation*}
u=L_{\gamma}^{-1}[(\gamma+\lambda) u]=\frac{\gamma+\lambda}{\gamma} K u . \tag{**}
\end{equation*}
$$

More precisely, $u \in H_{0}^{1}(U)$ solves $\left({ }^{*}\right)$ if and only if it solves $\left({ }^{* *}\right)$.
We see that $\left({ }^{* *}\right)$ is just an eigenvalue problem for the compact operator K,

$$
K u=\frac{\gamma}{\gamma+\lambda} u
$$

This allows us to apply Theorem A.D.6. It asserts that the allowable values of the ratio $\frac{\gamma}{\gamma+\lambda}$ form a set that is at most countable and tends to 0 . Recall that we're taking $\lambda>-\gamma$, so these allowable values are all positive.

Proof of Theorem 6.2.5

The allowable values of $\frac{\gamma}{\gamma+\lambda}$ can be expressed as

$$
\mu_{k}=\frac{\gamma}{\gamma+\lambda_{k}}
$$

and either the collection $\left\{\mu_{k}\right\}$ is finite or the collection is countable and

$$
\lim _{k \rightarrow \infty} \mu_{k}=0
$$

In the former case, the collection $\Sigma=\left\{\lambda_{k}\right\}$ is finite, while in the latter case it is countable with

$$
\lim _{k \rightarrow \infty} \lambda_{k}=+\infty
$$

By a choice of ordering, we can take the set $\left\{\lambda_{k}\right\}$ to be nondecreasing.

The Resolvent for Elliptic Operators

Notes. 1. We saw in Step 2 of the proof that if $\lambda \in \Sigma$, then there exists a solution $u \in H_{0}^{1}(U) \backslash\{0\}$ to the equation

$$
\begin{align*}
L u-\lambda u & =0, & & \text { in } U \\
u & =0, & & \text { on } \partial U . \tag{*}
\end{align*}
$$

l.e., $\Sigma=\sigma_{p}(L)$.
2. We can proceed similarly in the case that we take $H_{0}^{1}(U)$ to be a complex Hilbert space. In that case, Item (i) of Theorem 6.2.5 holds precisely as stated for some (at most) countable set $\Sigma \subset \mathbb{C}$, and Item (ii) holds with

$$
\lim _{k \rightarrow \infty}\left|\lambda_{k}\right|=+\infty
$$

The Resolvent for Elliptic Operators

3. Even if we take $H_{0}^{1}(U)$ to be a complex Hilbert space, the eigenvalues of L are confined to \mathbb{R} in many important cases. For example, the eigenvalues associated with the Laplacian operator $L=-\Delta$ are confined to \mathbb{R}, and more generally this is the case for operators of the form

$$
L u=-\sum_{i, j=1}^{n}\left(a^{i j} u_{x_{i}}\right)_{x_{j}}+c u
$$

with $a^{i j}=a^{j i}$ for all $i, j \in\{1,2, \ldots, n\}$.

The Resolvent for Elliptic Operators

Theorem 6.2.6. Suppose $U \subset \mathbb{R}^{n}$ is open and bounded, $a^{i j}, b^{i}$, $c \in L^{\infty}(U)(\forall i, j \in\{1,2, \ldots n\})$, and L is uniformly elliptic. For Σ as in Theorem 6.2.5, if $\lambda \notin \Sigma$ then there exists a constant C so that for any $f \in L^{2}(U)$ and corresponding (uniquely defined) weak solution $u \in H_{0}^{1}(U)$ to

$$
\begin{aligned}
L u & =\lambda u+f, \quad \text { in } U \\
u & =0, \quad \text { on } \partial U,
\end{aligned}
$$

we have the inequality

$$
\|u\|_{L^{2}(U)} \leq C\|f\|_{L^{2}(U)} .
$$

The constant C depends only on λ, U, and the coefficients of L.

The Resolvent for Elliptic Operators
Note. In particular, this theorem states that for all $\lambda \notin \Sigma$, the resolvent operator

$$
R_{L}(\lambda):=(L-\lambda I)^{-1}
$$

is bounded as a map $R_{L}(\lambda): L^{2}(U) \rightarrow L^{2}(U)$.

Proof of Theorem 6.2.6

Suppose not. Then for some $\lambda \notin \Sigma$ we can find sequences $\left\{\tilde{u}_{m}\right\}_{m=1}^{\infty} \subset H_{0}^{1}(U)$ and $\left\{\tilde{f}_{m}\right\}_{m=1}^{\infty} \subset L^{2}(U)$ so that

$$
\begin{aligned}
L \tilde{u}_{m} & =\lambda \tilde{u}_{m}+\tilde{f}_{m}, \quad \text { in } U \\
\tilde{u}_{m} & =0, \quad \text { on } \partial U,
\end{aligned}
$$

in the weak sense, but

$$
\left\|\tilde{u}_{m}\right\|_{L^{2}(U)}>m\left\|\tilde{f}_{m}\right\|_{L^{2}(U)}
$$

for all $m=1,2, \ldots$.

Proof of Theorem 6.2.6

By a choice of scaling,

$$
u_{m}:=\frac{\tilde{u}_{m}}{\left\|\tilde{u}_{m}\right\|_{L^{2}(U)}}, \quad f_{m}=\frac{\tilde{f}_{m}}{\left\|\tilde{u}_{m}\right\|_{L^{2}(U)}}
$$

we can take $\left\{u_{m}\right\}_{m=1}^{\infty}$ and $\left\{f_{m}\right\}_{m=1}^{\infty}$ to satisfy

$$
\begin{aligned}
L u_{m} & =\lambda u_{m}+f_{m}, \quad \text { in } U \\
u_{m} & =0, \quad \text { on } \partial U,
\end{aligned}
$$

in the weak sense, with $\left\|u_{m}\right\|_{L^{2}(U)}=1$ and

$$
\left\|u_{m}\right\|_{L^{2}(U)}>m\left\|f_{m}\right\|_{L^{2}(U)}
$$

for all $m=1,2, \ldots$.
Since $\left\|u_{m}\right\|_{L^{2}(U)}=1$ for all $m=1,2, \ldots$, we see that $\left\|f_{m}\right\|_{L^{2}(U)}<\frac{1}{m} \rightarrow 0$ as $m \rightarrow \infty$.

Proof of Theorem 6.2.6

Let's check that the sequence $\left\{u_{m}\right\}_{m=1}^{\infty}$ is bounded in $H_{0}^{1}(U)$.
If $B[u, v]$ denotes the bilinear form associated with L, then from Theorem 6.2.2 we have the usual lower bound estimate

$$
B\left[u_{m}, u_{m}\right] \geq \beta\left\|u_{m}\right\|_{H^{1}(U)}^{2}-\gamma\left\|u_{m}\right\|_{L^{2}(U)}^{2}, \quad \forall m=1,2, \ldots
$$

This allows us to write

$$
\begin{gathered}
\beta\left\|u_{m}\right\|_{H^{1}(U)}^{2}-\gamma\left\|u_{m}\right\|_{L^{2}(U)}^{2}-\lambda\left\|u_{m}\right\|_{L^{2}(U)}^{2} \leq B\left[u_{m}, u_{m}\right]-\lambda\left(u_{m}, u_{m}\right) \\
=\left(f_{m}, u_{m}\right) \leq\left\|f_{m}\right\|_{L^{2}(U)}\left\|u_{m}\right\|_{L^{2}(U)},
\end{gathered}
$$

and using $\left\|u_{m}\right\|_{L^{2}(U)}=1$,

$$
\beta\left\|u_{m}\right\|_{H^{1}(U)}^{2} \leq(\gamma+\lambda)+\frac{1}{m} .
$$

We see that $\left\{u_{m}\right\}_{m=1}^{\infty}$ is bounded in $H_{0}^{1}(U)$.

Proof of Theorem 6.2.6

Since $H_{0}^{1}(U)$ is reflexive, we can conclude from Theorem A.D. 3 that there exists a subsequence $\left\{u_{m_{j}}\right\}_{j=1}^{\infty} \subset\left\{u_{m}\right\}_{m=1}^{\infty}$ so that

$$
u_{m_{j}} \rightharpoonup u \quad \text { in } H_{0}^{1}(U)
$$

Also, since $H_{0}^{1}(U) \subset \subset L^{2}(U)$, we can extract a further subsequence of $\left\{u_{m_{j}}\right\}_{j=1}^{\infty}$ (though let's continue to use $\left\{u_{m_{j}}\right\}_{j=1}^{\infty}$), so that

$$
u_{m_{j}} \rightarrow u \text { in } L^{2}(U)
$$

(By uniqueness of weak limits, and the fact that strong convergence implies weak convergence, the the limits must agree.) Notice particularly that since $\left\|u_{m_{j}}\right\|_{L^{2}(U)}=1$ for all $j \in\{1,2, \ldots\}$, we must have $\|u\|_{L^{2}(U)}=1$.

For each $j \in\{1,2, \ldots\}, u_{m_{j}}$ satisfies the weak problem

$$
B\left[u_{m_{j}}, v\right]-\lambda\left(u_{m_{j}}, v\right)=\left(f_{m_{j}}, v\right), \quad \forall v \in H_{0}^{1}(U)
$$

Proof of Theorem 6.2.6

For each $v \in H_{0}^{1}(U)$, the maps

$$
\begin{aligned}
u_{m_{j}} & \mapsto B\left[u_{m_{j}}, v\right] \\
u_{m_{j}} & \mapsto\left(u_{m_{j}}, v\right)
\end{aligned}
$$

are bounded linear operators on $H_{0}^{1}(U)$, so by weak convergence we have the limits

$$
\begin{aligned}
\lim _{j \rightarrow \infty} B\left[u_{m_{j}}, v\right] & =B[u, v] \\
\lim _{j \rightarrow \infty}\left(u_{m_{j}}, v\right) & =(u, v)
\end{aligned}
$$

In addition,

$$
\lim _{j \rightarrow \infty}\left|\left(f_{m_{j}}, v\right)\right| \leq \lim _{j \rightarrow \infty}\left\|f_{m_{j}}\right\|_{L^{2}(U)}\|v\|_{L^{2}(U)} \leq \lim _{j \rightarrow \infty} \frac{\|v\|_{L^{2}(U)}}{m_{j}}=0
$$

Proof of Theorem 6.2.6

If we take $j \rightarrow \infty$ in

$$
B\left[u_{m_{j}}, v\right]-\lambda\left(u_{m_{j}}, v\right)=\left(f_{m_{j}}, v\right), \quad \forall v \in H_{0}^{1}(U)
$$

we obtain

$$
B[u, v]-\lambda(u, v)=0 \quad \forall v \in H_{0}^{1}(U)
$$

I.e., u is a weak solution of

$$
\begin{aligned}
L u & =\lambda u, \quad \text { in } U \\
u & =0, \quad \text { on } \partial U .
\end{aligned}
$$

Since $\lambda \notin \Sigma$, we know from Theorem 6.2.5 that u is uniquely defined, and since 0 is clearly a solution, this means $u=0$. But this contradicts our observation that $\|u\|_{L^{2}(U)}=1$, and so contradicts our original assumption that there exists a value $\lambda \notin \Sigma$ for which the claimed estimate doesn't hold.

