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Higher Interior Regularity

If we assume additional smoothness on the coefficients of our
elliptic operator L, and likewise assume f is in a higher regularity
space, then we can conclude additional local regularity on our weak
solution u.

We’ll summarize two theorems along these lines, and then move on
to boundary regularity.



Higher Interior Regularity

Theorem 6.3.2. Suppose U ⊂ Rn is open and bounded, aij , bi ,
c ∈ Cm+1(U) (∀ i , j ∈ {1, 2, . . . n}) for some m ∈ {0, 1, 2, . . . },
and L is uniformly elliptic. Also, suppose f ∈ Hm(U), and
u ∈ H1(U) (not necessarily H1

0 (U)) is a weak solution of

Lu = f in U.

Then u ∈ Hm+2
loc (U), and for each V ⊂⊂ U, there exists a constant

C , depending only on V , U, m, and the coefficients of L, so that

‖u‖Hm+2(V ) ≤ C (‖f ‖Hm(U) + ‖u‖L2(U)).



Higher Interior Regularity

Notes. 1. The proof proceeds by induction on m, noting that
Theorem 6.3.1 is (with minor adjustments) the case m = 0.

2. Since Reg (Hm+2) = m + 2− n
2 , we can conclude that for each

V ⊂⊂ U, u ∈ C `
∗,γ∗(V̄ ), where we recall that

`∗ = m + 2− [
n

2
]− 1,

and

γ∗ =

{
[n2 ] + 1− n

2 if n
2 is not an integer

any value ∈ (0, 1) if n
2 is an integer.

Since V ⊂⊂ U is arbitrary, u ∈ C `
∗
(U). For example, if n = 3 and

m = 2, then for each V ⊂⊂ U, u ∈ C 2, 12 (V̄ ), so u is a classical
solution (i.e., u ∈ C 2(U)).



Higher Interior Regularity

Theorem 6.3.3. Suppose U ⊂ Rn is open and bounded, aij , bi ,
c ∈ C∞(U) (∀ i , j ∈ {1, 2, . . . n}), and L is uniformly elliptic. Also,
suppose f ∈ C∞(U), and u ∈ H1(U) (not necessarily H1

0 (U)) is a
weak solution of

Lu = f in U.

Then u ∈ C∞(U).

Note. Notice that f ∈ C∞(U) =⇒ f ∈ H∞(W ) for any
W ⊂⊂ U, and this allows us to apply Theorem 6.3.2 (with W
replacing U) for all m ∈ {0, 1, 2, . . . }.



Boundary Regularity

In order to extend interior regularity to the boundary (i.e., to
remove the local nature of the last three theorems), we need to
assume some smoothness on ∂U.

Theorem 6.3.4. Suppose U ⊂ Rn is open and bounded with C 2

boundary, aij ∈ C 1(Ū), bi , c ∈ L∞(U) (∀ i , j ∈ {1, 2, . . . n}), and L
is uniformly elliptic. Also, suppose f ∈ L2(U), and u ∈ H1

0 (U) is a
weak solution of

Lu = f in U (*)
u = 0, on ∂U.

Then u ∈ H2(U), and there exists a constant C , depending only on
U and the coefficients of L, so that

‖u‖H2(U) ≤ C (‖f ‖L2(U) + ‖u‖L2(U)).



Boundary Regularity

Note. If u ∈ H1
0 (U) is the unique weak solution of (*), then

according to Theorem 6.2.6 (boundedness of the resolvent), we
have

‖u‖L2(U) ≤ C̃‖f ‖L2(U),

for some constant C̃ that depends only on U and the coefficients of
L. It follows that there exists a constant ˜̃C , depending only on U
and the coefficients of L, so that

‖u‖H2(U) ≤
˜̃C‖f ‖L2(U).



Proof of Theorem 6.3.4

1. We’ll start by working with a locally flat boundary and show in
Step 6 how to map the general case into that setting. We’ll work
locally near a point ~x0 ∈ ∂Rn

+, and for notational convenience, we’ll
shift coordinates so that ~x0 = 0.

We set

U :=Bo(0, 1) ∩ Rn
+ (i.e., this is U in the first steps)

V :=Bo(0,
1
2

) ∩ Rn
+,

and we’ll introduce a cut-off function ζ ∈ C∞c (Rn) so that

ζ(~x) =


1 ~x ∈ B(0, 1

2)

∈ [0, 1] ~x ∈ B(0, 3
4)\B(0, 1

2)

0 ~x ∈ Rn\B(0, 3
4).



Proof of Theorem 6.3.4

2. Since u ∈ H1
0 (U) is a weak solution of (*), we have

B[u, v ] = (f , v), ∀ v ∈ H1
0 (U),

and precisely as in Step 2 of the proof of Theorem 6.3.1 we can
express this equation as∫

U

n∑
i ,j=1

aijuxi vxjd~x = (f̃ , v), ∀ v ∈ H1
0 (U), (**)

where

f̃ := f −
n∑

i=1

biuxi − cu ∈ L2(U).



Proof of Theorem 6.3.4

3. Fix any k ∈ {1, 2, . . . , n − 1} and any 0 < |h| < 1
8 , and as in the

proof of Theorem 6.3.1, set

v = −D−hk (ζ2Dh
ku).

We would like to substitute v into (**) as in the proof of Theorem
6.3.1, but we need to verify that in the current setting we have
v ∈ H1

0 (U). For this, notice that

v(~x) = − D−hk

(
ζ(~x)2 u(~x + hêk)− u(~x)

h

)
= −

{
ζ(~x − hêk)2 u(~x)− u(~x − hêk)

−h2 − ζ(~x)2 u(~x + hêk)− u(~x)

−h2

}
=

1
h2

{
ζ(~x − hêk)2(u(~x)− u(~x − hêk))− ζ(~x)2(u(~x + hêk)− u(~x))

}
.



Proof of Theorem 6.3.4

Since k ∈ {1, 2, . . . , n − 1}, the points ~x ± hêk never leave Rn
+ (for

~x ∈ Rn
+). Since ζ is 0 in Rn\B(0, 3

4), it’s clear that v(~x) = 0 for ~x
near ∂B(0, 1) ∩ Rn

+, and since u = 0 in the trace sense on
B(0, 1) ∩ ∂Rn

+, we see that v = 0 in the trace sense on ∂U.

Otherwise, v is a sum of terms in H1(U) (as in the proof of
Theorem 6.3.1), so v ∈ H1

0 (U).

We’re now justified in substituting v into (**), and as in the proof
of Theorem 6.3.1, we’ll denote the left-hand side A and the
right-hand side B .



Proof of Theorem 6.3.4

4. Proceeding as in Steps 4-6 of the proof of Theorem 6.3.1, we
obtain the inequality∫
V
|Dh

kDu|2d~x ≤ C1

∫
U
f 2 + u2 + |Du|2d~x , k ∈ {1, 2, . . . , n− 1},

for some constant C1 (which was C8 in the proof of Theorem
6.3.1). From another slight restatement of Theorem 5.8.3 (ii), we
can conclude that that

uxk ∈ H1(V ) ∀ k ∈ {1, 2, . . . , n − 1},

with the estimate
n∑

k,l=1
k+l<2n

‖uxkxl‖L2(V ) ≤ C2(‖f ‖L2(U) + ‖u‖H1(U)).

In this case, the restatement is because we don’t have V ⊂⊂ U.



Proof of Theorem 6.3.4

Recall that in Step 7 of the proof of Theorem 6.3.1 (along with a
homework problem), we saw that we can replace ‖u‖H1(U) on the
right-hand side of this last inequality with ‖u‖L2(U). This gets us to

n∑
k,l=1
k+l<2n

‖uxkxl‖L2(V ) ≤ C3(‖f ‖L2(U) + ‖u‖L2(U)).

5. We still need an estimate on ‖uxnxn‖L2(V ). For this recall from a
note following our statement of Theorem 6.3.1 that interior
regularity allows us to work with the strong form of our equation,
Lu = f for a.e. ~x ∈ U. To take advantage of this, let’s first write
our equation in the non-divergence form

−
n∑

i ,j=1

aijuxixj +
n∑

i=1

b̃iuxi + cu = f , b̃i := bi −
n∑

j=1

aijxj .



Proof of Theorem 6.3.4

We can now isolate uxnxn as

annuxnxn = −
n∑

i ,j=1
i+j<2n

aijuxixj +
n∑

i=1

b̃iuxi + cu − f .

Our uniform ellipticity condition is
n∑

i ,j=1

aij(~x)ξiξj ≥ θ|~ξ|2, ∀ ~ξ ∈ Rn,

for some θ > 0 and all ~x ∈ U. In particular, if we take ~ξ = ên, we
see that

ann(~x) ≥ θ, ∀ ~x ∈ U.



Proof of Theorem 6.3.4

This allows us to divide our relation for uxnxn by ann(~x) to obtain an
inequality

|uxnxn | ≤ C4

( n∑
i ,j=1
i+j<2n

|uxixj |+ |Du|+ |u|+ |f |
)
,

for a.e. ~x ∈ U. If we square this inequality and integrate both sides
over V , we obtain

‖uxnxn‖L2(V ) ≤ C5

( n∑
i ,j=1
i+j<2n

‖uxixj‖L2(V )+‖Du‖L2(V )+‖u‖L2(V )+‖f ‖L2(V )

)
.

Combining this inequality with our previous observations, we see
that

‖u‖H2(V ) ≤ C6

(
‖u‖L2(U) + ‖f ‖L2(U)

)
,

for some constant C6.



Proof of Theorem 6.3.4

6. In the case of a general C 2 boundary, we fix any ~x0 ∈ ∂U, and
we let ~Φ(~x) denote our usual straightening map, noting that for
some r > 0 sufficiently small ~Φ is a C 2 function on Bo(~x0, r) with
C 2 inverse ~Ψ(~y). We’ll label the range of ~Φ so that ~Φ(~x0) = 0.
(I.e., ~y0 = 0.)

7. We choose s > 0 sufficiently small so that

U ′ := Bo(0, s) ∩ {yn > 0} ⊂ ~Φ(U ∩ B(~x0, r)),

and correspondingly we set

V ′ := Bo(0,
s

2
) ∩ {yn > 0}.

We also set
u′(~y) := u(Ψ(~y)), ~y ∈ U ′.

See figure on the next slide.





Proof of Theorem 6.3.4

We’ll check the following claims in the homework:

1. u′ ∈ H1(U ′)

2. u′ = 0 on ∂U ′ ∩ {yn = 0} in the trace sense

8. In the new variables, our elliptic PDE can be expressed as

L′u′ = f ′ in U ′,

where
f ′(~y) := f (~Ψ(~y)),

and

L′u′ := −
n∑

k,l=1

(a′ klu′yk )yl +
n∑

k=1

b′ ku′yk + c ′u′.

The coefficients a′ kl , b′ k , and c ′ are given below.



Proof of Theorem 6.3.4

The coefficients a′ kl , b′ k , and c ′ are obtained directly by expressing
the original operator L in the variable ~y = ~Φ(~x) (⇐⇒ ~x = ~Ψ(~y)).
Clearly,

c ′(~y) = c(~Ψ(~y)).

For the first-order term (in original variables)
n∑

r=1

br (~x)uxr (~x),

we need to carry out a short calculation, and we’ll do that on the
next slide. For this, we’ll denote by Φk the kth component of ~Φ.



Proof of Theorem 6.3.4

We have
n∑

r=1

br (~Ψ(~y))
∂

∂xr
u(~Ψ(~y)) =

n∑
r=1

br (~Ψ(~y))
∂

∂xr
u′(~y)

=
n∑

r=1

br (~Ψ(~y))Dyu
′(~y)

∂

∂xr
~Φ(~x)

=
n∑

r=1

br (~Ψ(~y))
n∑

k=1

Φk
xr (
~Ψ(~y))u′yk (~y)

=
n∑

k=1

{ n∑
r=1

br (~Ψ(~y))Φk
xr (
~Ψ(~y))

}
u′yk (~y).

We see that

b′ k(~y) =
n∑

r=1

br (~Ψ(~y))Φk
xr (
~Ψ(~y)).



Proof of Theorem 6.3.4

Proceeding similarly for the second-order term, we find that

a′ kl(~y) =
n∑

r ,s=1

ars(~Ψ(~y))Φk
xr (
~Ψ(~y))Φl

xs (
~Ψ(~y)).

Claim. u′(~y) = u(~Ψ(~y)) is a weak solution of

L′u′ = f ′ in U ′.

In order to see this, we take any v ′ ∈ H1
0 (U ′) and let B ′[u′, v ′]

denote the bilinear form associated with L′,

B ′[u′, v ′] =

∫
U′

{ n∑
k,l=1

a′ klu′ykv
′
yl

+
n∑

k=1

b′ ku′ykv
′ + c ′u′v ′

}
d~x .



Proof of Theorem 6.3.4

Also, we set
v(~x) = v ′(~Φ(~x)),

and observe that similarly as in the homework problem above,
v ∈ H1

0 (~Ψ(U ′)). In addition, it will be convenient below to extend
v as 0 on U\~Ψ(U ′).

This will allow us to express B ′[u′, v ′] in terms of u and v , which is
what we do next.



Proof of Theorem 6.3.4

For the first-order term in B ′[u′, v ′], we can write
n∑

k=1

b′ ku′ykv
′ =

n∑
k=1

b′ k(
∂

∂yk
u(~Ψ(~y)))v(~Ψ(~y))

=
n∑

k=1

b′ k(Du)(~Ψ(~y))~Ψyk (~y)v(~Ψ(~y))

=
n∑

k=1

b′ k
n∑

i=1

uxi (
~Ψ(~y))Ψi

yk
(~y)v(~Ψ(~y)).

For notational brevity, we’ll write this last expression as
n∑

i=1

n∑
k=1

b′ kuxi Ψ
i
yk
v .

Proceeding similarly for the other two terms, we obtain the
relationship on the next slide.



Proof of Theorem 6.3.4

We have

B ′[u′, v ′] =
n∑

i ,j=1

n∑
k,l=1

∫
U′

a′ kluxi Ψ
i
yk
vxj Ψ

j
yl
d~y

+
n∑

i=1

n∑
k=1

∫
U′

b′ kuxi Ψ
i
yk
vd~y +

∫
U′

c ′uvd~y .

According to our definition of a′ kl , we can write
n∑

k,l=1

a′ klΨi
yk

Ψj
yl

=
n∑

k,l=1

n∑
r ,s=1

arsΦk
xr Φ

l
xs Ψ

i
yk

Ψj
yl

=
n∑

k,l=1

{(DΦk)A(DΦl)T}Ψi
yk

Ψj
yl

= (DΨi ){(D~Φ)A(D~Φ)T}(DΨj)T .



Proof of Theorem 6.3.4

Recall from our construction of the maps ~Φ and ~Ψ last semester
that D~Ψ = (D~Φ)−1 (just differentiate the relation ~Ψ(~Φ(~x)) = ~x).
We see that

(DΨi )D~Φ = êTi ∀ i ∈ {1, 2, . . . , n}.

In this way, we see that
n∑

k,l=1

a′ klΨi
yk

Ψj
yl

= êTi Aêj = aij .

Similarly,
b∑

k=1

b′ kΨi
yk

=
n∑

k=1

n∑
r=1

brΦk
xr Ψ

i
yk

=
n∑

r=1

br
n∑

k=1

(D~Ψ)ik(D~Φ)kr

=
n∑

r=1

br{(D~Ψ)(D~Φ)}ir = bi .



Proof of Theorem 6.3.4

Combining these observations, and using the change of variables
~y = ~Φ(~x) (recall that detD~Φ(~x) = 1)

B ′[u′, v ′] =
n∑

i ,j=1

n∑
k,l=1

∫
U′

a′ kluxi Ψ
i
yk
vxj Ψ

j
yl
d~y

+
n∑

i=1

n∑
k=1

∫
U′

b′ kuxi Ψ
i
yk
vd~y +

∫
U′

c ′uvd~y

~y=~Φ(~x)
=

∫
U

{ n∑
i ,j=1

[ n∑
k,l=1

a′ klΨi
yk

Ψj
yl

]
uxi vxj

+
n∑

i=1

[ n∑
k=1

b′ kΨi
yk

]
uxi v + cuv

}
d~x

=

∫
U

{ n∑
i ,j=1

aijuxi vxj +
n∑

i=1

biuxi v + cuv
}
d~x = B[u, v ].



Proof of Theorem 6.3.4

The latter integrals can be expressed over U because v is taken to
be 0 on U\Ψ(U ′). We see that for all v ′ ∈ H1

0 (U ′),

B ′[u′, v ′] = B[u, v ] = (f , v) = (f ′, v ′),

and so u′ is a weak solution of L′u′ = f ′.

9. We will proceed by applying Steps 1-5 to L′, and for this, we
need to verify that L′ satisfies our assumptions on L in the theorem.

Recalling the relation

a′ kl(~y) =
n∑

r ,s=1

ars(~Ψ(~y))Φk
xr (
~Ψ(~y))Φl

xs (
~Ψ(~y)),

we see that our assumption of a C 2 boundary ensures us that
a′ kl ∈ C 1(Ū ′) for all k , l ∈ {1, 2, . . . , n}. It’s clear that
b′ k , c ∈ L∞(U ′), for all k ∈ {1, 2, . . . , n}.



Proof of Theorem 6.3.4

We also need to check that L′ is uniformly elliptic in U ′. For this,
we take any ~y ∈ U ′ and any ~ξ ∈ Rn and we compute

n∑
k,l=1

a′ kl(~y)ξkξl =
n∑

k,l=1

n∑
r ,s=1

ars(~Ψ(~y))Φk
xr (
~Ψ(~y))Φl

xs (
~Ψ(~y))ξkξl

=
n∑

r ,s=1

ars(~Ψ(~y))ηrηs ≥ θ|~η|2,

where we’ve set (with ~ξ viewed as a row vector)

~η(~y) := ~ξD~Φ(~Ψ(~y)) =⇒ ~ξ = ~η(~y)(D~Φ)−1 = ~η(~y)D~Ψ(~y).

We see that
|~ξ| ≤ C7|~η(~y)|,

for some constant C7.



Proof of Theorem 6.3.4

In particular,

θ|~η|2 ≥ θ

C 2
7
|~ξ|2,

and this gives uniform ellipticity with constant θ/C 2
7 .

10. We are now justified in applying Steps 1-5 to u′ as a solution of
L′u′ = f ′, and this provides the inequality

‖u′‖H2(V ′) ≤ C8(‖f ′‖L2(U′) + ‖u′‖L2(U′)).

Returning to original variables, we can express this as

‖u‖H2(V ) ≤ C9(‖f ‖L2(U) + ‖u‖L2(U)),

where V = ~Ψ(V ′) and on the right-hand side we’ve extended the
domain of integration from ~Ψ(U ′) to U.



Proof of Theorem 6.3.4

We now put these local estimates together in the usual way. Since
∂U is compact, we can find finitely many sets {Vi}Ni=1 as described
above, along with one additional set V0 ⊂⊂ U so that

U =
N⋃
i=0

Vi .



Proof of Theorem 6.3.4

From Steps 1-9 of the current proof, we have

‖u‖H2(Vi ) ≤ Ki (‖f ‖L2(U) + ‖u‖L2(U)), i = 1, 2, . . .N,

for some constants {Ki}Ni=1, while from Theorem 6.3.1 we have

‖u‖H2(V0) ≤ K0(‖f ‖L2(U) + ‖u‖L2(U)),

for some constant K0. Finally,

‖u‖2H2(U) ≤
N∑
i=0

‖u‖2H2(Vi )

(inequality because of overlap in the sets), so for some constant C
we have the claimed inequality

‖u‖H2(U) ≤ C (‖f ‖L2(U) + ‖u‖L2(U)). �



Higher Boundary Regularity

We’ll conclude by summarizing two results on higher boundary
regularity.

Theorem 6.3.5. Suppose U ⊂ Rn is open and bounded with
Cm+2 boundary, aij , bi , c ∈ Cm+1(Ū) (∀ i , j ∈ {1, 2, . . . n}) for
some m ∈ {0, 1, 2, . . . }, and L is uniformly elliptic. Also, suppose
f ∈ Hm(U), and u ∈ H1

0 (U) is a weak solution of

Lu = f in U

u = 0, on ∂U.

Then u ∈ Hm+2(U), and there exists a constant C , depending only
on m, U and the coefficients of L, so that

‖u‖Hm+2(U) ≤ C (‖f ‖Hm(U) + ‖u‖L2(U)).

Note. If Reg (Hm+2) > 0, then u is continuous up to the
boundary.



Higher Boundary Regularity

Theorem 6.3.6. Suppose U ⊂ Rn is open and bounded with C∞

boundary, aij , bi , c ∈ C∞(Ū) (∀ i , j ∈ {1, 2, . . . n}), and L is
uniformly elliptic. Also, suppose f ∈ C∞(Ū), and u ∈ H1

0 (U) is a
weak solution of

Lu = f in U

u = 0, on ∂U.

Then u ∈ C∞(Ū).


