Second Order Parabolic PDE: Background on Function Spaces Involving Time, Part I

MATH 612, Texas A&M University

Spring 2020

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Overview

When we analyze evolutionary PDE such as the heat equation

$$u_t = \Delta u$$
,

it will useful to view the equation as an ODE with dependent variable taking values in an appropriate Banach space X. I.e., for some value T > 0, we will think of u = u(t) as a map $u : [0, T] \rightarrow X$.

For some background on such functions, we'll briefly return to Chapter 5 in Evans, Section 5.9.2 on Spaces involving time.

うして ふゆう ふほう ふほう うらつ

Continuity and Differentiability

Continuity. We say that a function $u : [0, T] \to X$ is continuous at a point $t_0 \in (0, T)$ if given any $\epsilon > 0$ there exists some $\delta > 0$ so that

$$|t-t_0| < \delta \implies ||u(t)-u(t_0)||_X < \epsilon.$$

As usual, we can define continuity at endpoints in a one-sided fashion.

Differentiability. We say that a function $u : [0, T] \to X$ is differentiable at a point $t_0 \in (0, T)$ if there exists some $u'(t_0) \in X$ and corresponding map $\epsilon(h; t_0)$, so that

$$u(t_0 + h) = u(t_0) + u'(t_0)h + \epsilon(h; t_0),$$

where

$$\lim_{h\to 0}\frac{\|\epsilon(h;t_0)\|_X}{h}=0.$$

Easy Examples

1. If $u_0 \in X$ is any fixed element, and $\zeta \in C([0, T]; \mathbb{R})$, then

$$u(t) = \zeta(t)u_0$$

is a continuous map $u : [0, T] \to X$. Likewise, if ζ is differentiable at some $t_0 \in (0, T)$ then so is u(t), and $u'(t_0) = \zeta'(t_0)u_0$.

2. If $v : [0, T] \to X$ is continuous on [0, T] and $\zeta \in C([0, T]; \mathbb{R})$, then

$$u(t) = \zeta(t)v(t)$$

is a continuous map $u : [0, T] \rightarrow X$. Likewise, if v and ζ are both differentiable at some $t_0 \in (0, T)$ then so is u(t), and

$$u'(t_0) = \zeta'(t_0)v(t_0) + \zeta(t_0)v'(t_0).$$

The Spaces $C^k(\bar{I}; X)$

Definition. For an open interval $I \subset \mathbb{R}$, we denote by $C(\overline{I}; X)$ the collection of all uniformly continuous functions $u: I \to X$, for which we have

$$||u||_{C(\bar{I};X)} := \sup_{0 < t < T} ||u(t)||_X < \infty.$$

If I = (0, T), then $C(\overline{I}; X)$ is equivalent to the set C([0, T]; X)that Evans defines on p. 301.

We denote by $C^{k}(\overline{I}; X)$ the collection of all uniformly continuous functions $u: I \to X$ for which the first k derivatives of u are also uniformly continous as maps $I \mapsto X$, and for which we have

$$\|u\|_{C^k(\bar{l};X)} := \sum_{j=0}^k \|u^{(j)}\|_{C(\bar{l};X)} < \infty.$$

We denote by $C^{\infty}(\overline{I}; X)$ the collection of all $u: I \to X$ so that $u \in C^{k}(\bar{I}; X)$ for all k = 0, 1, 2, ...

The Spaces $C_c^k(I; X)$

Theorem 1. If X is a Banach space, then for each $k \in \{0, 1, 2, ...\}$, the space $C^k(\overline{I}; X)$ is a Banach space.

Definition. Let $I \subset \mathbb{R}$ be an open interval. For each $k \in \{0, 1, 2, ...\}$, we denote by $C_c^k(I; X)$ the space of all maps $u: I \to X$ so that u and its first k derivatives are continuous on I, and spt $(u) \subset [a, b] \subset I$.

We denote by $C_c^{\infty}(I; X)$ the collection of all maps $u: I \to X$ so that u and its derivatives to every order are continuous on I, and spt $(u) \subset [a, b] \subset I$.

Riemann Integration

Definition. For a map $u : [0, T] \rightarrow X$, we can define the usual Riemann sums

$$\mathcal{R}_P = \sum_{i=1}^N u(\overline{t}_i)(t_i - t_{i-1}),$$

where *P* denotes a partition of [0, T], $0 = t_0 < t_1 < t_2 < \cdots < t_N = T$, and for each $i \in \{1, 2, \dots, N\}$, $\overline{t}_i \in [t_{i-1}, t_i]$. We denote the mesh of the partition as $\Delta P := \max_{i \in \{1, 2, \dots, N\}} |t_i - t_{i-1}|$.

If $\lim_{k\to\infty} \mathcal{R}_{P_k}$ exists for all sequences of partitions $\{P_k\}_{k=1}^{\infty}$ so that $\Delta P_k \to 0$ as $k \to \infty$, then we define the mutual limit as the Riemann integral of u

$$\int_0^T u(t)dt := \lim_{k\to\infty} \mathcal{R}_{P_k}.$$

うして ふゆう ふほう ふほう うらつ

Riemann Integration

Theorem 2. If X is a Banach space and $u \in C([0, T]; X)$, then the following hold:

(i) For all $t \in [0, T]$, the Riemann integral $\int_0^t u(s) ds$ exists.

(ii) The Riemann integral $\int_0^t u(s) ds$ is differentiable at each $t \in (0, T)$, and

$$\frac{d}{dt}\int_0^t u(s)ds = u(t).$$

(iii) If $u' \in C((0, T); X)$, then for any 0 < s < t < T,

$$u(t) = u(s) + \int_s^t u'(\tau) d\tau.$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

The usual development of Lebesgue integration as the supremum of integrals of simple functions relies on the ordering properties of \mathbb{R} , and can't be directly extended to the current setting.

Instead, we proceed by completing the space of simple functions with respect to a norm that we will denote $L^1((0, T); X)$ below. This leads to the Bochner integral of a function (named after the US mathematician, Salomon Bochner (1899)-(1982)).

Definitions.

(i) A function $s : [0, T] \rightarrow X$ is called a simple function if it has the form

$$s(t)=\sum_{i=1}^m \chi_{E_i}(t)u_i,$$

where each E_i is a Lebesque measurable subset of [0, T], χ_{E_i} denotes a characteristic function on E_i , and $u_i \in X$ for each $i \in \{1, 2, ..., m\}$. In this case, we define

$$\int_0^T s(t)dt := \sum_{i=1}^m |E_i|u_i \in X.$$

(ii) A function $u : [0, T] \to X$ is called strongly measurable if there exist simple functions $\{s_k\}_{k=1}^{\infty} : [0, T] \to X$ so that

$$s_k(t)
ightarrow u(t)$$
 in X for a.e. $0 < t < T$.

(iii) We say that a strongly measurable function $u : [0, T] \to X$ is (Bochner) integrable if there exists a sequence of simple functions $\{s_k\}_{k=1}^{\infty} : [0, T] \to X$ so that

$$\lim_{k \to \infty} \int_0^T \|s_k(t) - u(t)\|_X dt = 0.$$
 (*)

うして ふゆう ふほう ふほう うらつ

In this case, we define

$$\int_0^T u(t)dt := \lim_{k \to \infty} \int_0^T s_k(t)dt \in X.$$

Here, using the form of simple functions and (*), we see that the sequence $\{\int_0^T s_k(t)dt\}_{k=1}^\infty$ is Cauchy in X, and so converges in X.

Theorem A.E.8. A strongly measurable function $u : [0, T] \to X$ is integrable if and only if the map $t \mapsto ||u(t)||_X$ is integrable. In this case,

$$\|\int_0^T u(t)dt\|_X \leq \int_0^T \|u(t)\|_X dt,$$

and

$$\langle v^*, \int_0^T u(t) dt \rangle = \int_0^T \langle v^*, u(t) \rangle dt$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

for all $v^* \in X^*$.

Note. As an important special case of the latter claim, suppose X and Y are two Banach spaces, and X is continuously embedded in Y. Recalling that this means that the identity map $I : X \to Y$ is a bounded linear operator, we see that

$$I\int_0^T u(t)dt = \int_0^T Iu(t)dt.$$

うして ふゆう ふほう ふほう うらつ

I.e., the integrals associated with $u : [0, T] \rightarrow X$ and $Iu : [0, T] \rightarrow Y$ agree.

The Spaces $L^p(0, T; X)$

Definition. We denote by $L^{p}(0, T; X)$ the space of all strongly measurable functions $u : [0, T] \to X$ so that

$$\|u\|_{L^{p}(0,T;X)} := \left(\int_{0}^{T} \|u(t)\|_{X}^{p} dt\right)^{1/p} < \infty \quad (1 \le p < \infty)$$
$$\|u\|_{L^{p}(0,T;X)} := \underset{0 \le t \le T}{\operatorname{ess sup}} \|u(t)\|_{X} < \infty \quad (p = \infty).$$

For $1 \le p \le \infty$, we'll denote by $L^p_{loc}(0, T; X)$ the space of strongly measurable functions $u : [0, T] \to X$ so that $u \in L^p(a, b; X)$ for all $[a, b] \subset (0, T)$.

In the usual way, if u(t) = v(t) in X for a.e. $t \in (0, T)$, we equate u and v in $L^{p}(0, T; X)$.

Theorem 3. For any $1 \le p \le \infty$, if X is a Banach space, then $L^p(0, T; X)$ is a Banach space.

LDCT

Theorem 4. Suppose X is a Banach space, and a sequence of functions $\{f_k(t)\}_{k=1}^{\infty} \subset L^1(0, T; X)$ satisfies

$$f_k(t) o f(t)$$
 in X

for a.e. $t \in (0, T)$. Suppose also that there exists $g \in L^1(0, T; X)$ so that

 $\|f_k(t)\|_X \leq \|g(t)\|_X$

for a.e. $t \in (0, T)$. Then $f \in L^1(0, T; X)$ and

$$\lim_{k\to\infty}\int_0^T f_k(t)dt = \int_0^T f(t)dt \quad \text{in } X,$$

with also

$$\lim_{k\to\infty}\int_0^T \|f_k(t)-f(t)\|_X dt=0.$$

うして ふゆう ふほう ふほう うらつ

Approximation

Theorem 5. Suppose X is a Banach space and $1 \le p < \infty$. Then the set $C_c^{\infty}((0, T), X)$ is dense in $L^p(0, T; X)$. In fact, more is true. The collection of functions of the form

$$u(t) = \sum_{i=1}^{N} u_i \zeta_i(t); \quad \zeta_i \in C_c^{\infty}(0, T; \mathbb{R}), \quad u_i \in X$$

is dense in $L^p(0, T; X)$.

Here, N isn't fixed, but rather indicates that the sums are finite.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Mollification in $L^1_{loc}(0, T; X)$

Let

$$\eta(t) = egin{cases} Ce^{rac{1}{t^2-1}} & |t| < 1 \ 0 & |t| \geq 1, \end{cases}$$

where

$$C=\frac{1}{\int_{-1}^{1}e^{\frac{1}{t^{2}-1}}dt}\Rightarrow\int_{-\infty}^{+\infty}\eta(t)dt=1.$$

Then $\eta\in \mathcal{C}^\infty(\mathbb{R})$ and spt $(\eta)\subset [-1,1].$ As usual, we set

$$\eta_\epsilon(t) := rac{1}{\epsilon} \eta(rac{t}{\epsilon}) \Rightarrow {
m spt} \; \eta_\epsilon \subset (-\epsilon,\epsilon),$$

and also

$$egin{aligned} f^\epsilon(t) &:= \eta_\epsilon * f(t) = \int_{-\infty}^{+\infty} \eta_\epsilon(t- au) f(au) d au \ &= \int_{t-\epsilon}^{t+\epsilon} \eta_\epsilon(t- au) f(au) d au. \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Mollification in $L^1_{loc}(0, T; X)$

Theorem 6. Let X denote a Banach space and suppose $f \in L^1_{loc}(0, T; X)$ for some T > 0. For

$$f^{\epsilon}(t) := \eta_{\epsilon} * f(t) \quad \text{in } (\epsilon, T - \epsilon)$$

we have the following:

(i)
$$f^{\epsilon} \in C^{\infty}(\epsilon, T - \epsilon; X)$$
, and
 $\partial_{t}^{k} f^{\epsilon}(t) = (\partial_{t}^{k} \eta_{\epsilon}) * f(t); \quad k = 1, 2, \dots$
(ii) $f^{\epsilon}(t) \rightarrow f(t)$ in X as $\epsilon \rightarrow 0$ for a.e. $t \in (0, T)$.
(iii) If $f \in C((0, T); X)$ then $f^{\epsilon} \rightarrow f$ uniformly in X as $\epsilon \rightarrow 0$ on
compact subsets of $(0, T)$.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

(iv) If $1 \le p < \infty$ and $f \in L^p_{loc}((0, T); X)$, then $f^{\epsilon} \to f$ in $L^p_{loc}((0, T); X)$ as $\epsilon \to 0$.