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Overview

When we analyze evolutionary PDE such as the heat equation

ut = ∆u,

it will useful to view the equation as an ODE with dependent
variable taking values in an appropriate Banach space X . I.e., for
some value T > 0, we will think of u = u(t) as a map
u : [0,T ]→ X .

For some background on such functions, we’ll briefly return to
Chapter 5 in Evans, Section 5.9.2 on Spaces involving time.



Continuity and Differentiability

Continuity. We say that a function u : [0,T ]→ X is continuous at
a point t0 ∈ (0,T ) if given any ε > 0 there exists some δ > 0 so
that

|t − t0| < δ =⇒ ‖u(t)− u(t0)‖X < ε.

As usual, we can define continuity at endpoints in a one-sided
fashion.

Differentiability. We say that a function u : [0,T ]→ X is
differentiable at a point t0 ∈ (0,T ) if there exists some u′(t0) ∈ X
and corresponding map ε(h; t0), so that

u(t0 + h) = u(t0) + u′(t0)h + ε(h; t0),

where
lim
h→0

‖ε(h; t0)‖X
h

= 0.



Easy Examples

1. If u0 ∈ X is any fixed element, and ζ ∈ C ([0,T ];R), then

u(t) = ζ(t)u0

is a continuous map u : [0,T ]→ X . Likewise, if ζ is differentiable
at some t0 ∈ (0,T ) then so is u(t), and u′(t0) = ζ ′(t0)u0.

2. If v : [0,T ]→ X is continuous on [0,T ] and ζ ∈ C ([0,T ];R),
then

u(t) = ζ(t)v(t)

is a continuous map u : [0,T ]→ X . Likewise, if v and ζ are both
differentiable at some t0 ∈ (0,T ) then so is u(t), and

u′(t0) = ζ ′(t0)v(t0) + ζ(t0)v ′(t0).



The Spaces C k(Ī ;X )

Definition. For an open interval I ⊂ R, we denote by C (Ī ;X ) the
collection of all uniformly continuous functions u : I → X , for
which we have

‖u‖C(Ī ;X ) := sup
0<t<T

‖u(t)‖X <∞.

If I = (0,T ), then C (Ī ;X ) is equivalent to the set C ([0,T ];X )
that Evans defines on p. 301.

We denote by C k(Ī ;X ) the collection of all uniformly continuous
functions u : I → X for which the first k derivatives of u are also
uniformly continous as maps I 7→ X , and for which we have

‖u‖C k (Ī ;X ) :=
k∑

j=0

‖u(j)‖C(Ī ;X ) <∞.

We denote by C∞(Ī ;X ) the collection of all u : I → X so that
u ∈ C k(Ī ;X ) for all k = 0, 1, 2, . . . .



The Spaces C k
c (I ;X )

Theorem 1. If X is a Banach space, then for each
k ∈ {0, 1, 2, . . . }, the space C k(Ī ;X ) is a Banach space.

Definition. Let I ⊂ R be an open interval. For each
k ∈ {0, 1, 2, . . . }, we denote by C k

c (I ;X ) the space of all maps
u : I → X so that u and its first k derivatives are continuous on I ,
and spt (u) ⊂ [a, b] ⊂ I .

We denote by C∞c (I ;X ) the collection of all maps u : I → X so
that u and its derivatives to every order are continuous on I , and
spt (u) ⊂ [a, b] ⊂ I .



Riemann Integration

Definition. For a map u : [0,T ]→ X , we can define the usual
Riemann sums

RP =
N∑
i=1

u(t̄i )(ti − ti−1),

where P denotes a partition of [0,T ],
0 = t0 < t1 < t2 < · · · < tN = T , and for each i ∈ {1, 2, . . . ,N},
t̄i ∈ [ti−1, ti ]. We denote the mesh of the partition as
∆P := maxi∈{1,2,...,N} |ti − ti−1|.

If limk→∞RPk
exists for all sequences of partitions {Pk}∞k=1 so

that ∆Pk → 0 as k →∞, then we define the mutual limit as the
Riemann integral of u∫ T

0
u(t)dt := lim

k→∞
RPk

.



Riemann Integration

Theorem 2. If X is a Banach space and u ∈ C ([0,T ];X ), then
the following hold:

(i) For all t ∈ [0,T ], the Riemann integral
∫ t
0 u(s)ds exists.

(ii) The Riemann integral
∫ t
0 u(s)ds is differentiable at each

t ∈ (0,T ), and
d

dt

∫ t

0
u(s)ds = u(t).

(iii) If u′ ∈ C ((0,T );X ), then for any 0 < s < t < T ,

u(t) = u(s) +

∫ t

s
u′(τ)dτ.



Bochner Integration

The usual development of Lebesgue integration as the supremum of
integrals of simple functions relies on the ordering properties of R,
and can’t be directly extended to the current setting.

Instead, we proceed by completing the space of simple functions
with respect to a norm that we will denote L1((0,T );X ) below.
This leads to the Bochner integral of a function (named after the
US mathematician, Salomon Bochner (1899)-(1982)).



Bochner Integration

Definitions.

(i) A function s : [0,T ]→ X is called a simple function if it has the
form

s(t) =
m∑
i=1

χEi
(t)ui ,

where each Ei is a Lebesque measurable subset of [0,T ], χEi

denotes a characteristic function on Ei , and ui ∈ X for each
i ∈ {1, 2, . . . ,m}. In this case, we define∫ T

0
s(t)dt :=

m∑
i=1

|Ei |ui ∈ X .

(ii) A function u : [0,T ]→ X is called strongly measurable if there
exist simple functions {sk}∞k=1 : [0,T ]→ X so that

sk(t)→ u(t) in X for a.e. 0 < t < T .



Bochner Integration

(iii) We say that a strongly measurable function u : [0,T ]→ X is
(Bochner) integrable if there exists a sequence of simple functions
{sk}∞k=1 : [0,T ]→ X so that

lim
k→∞

∫ T

0
‖sk(t)− u(t)‖Xdt = 0. (*)

In this case, we define∫ T

0
u(t)dt := lim

k→∞

∫ T

0
sk(t)dt ∈ X .

Here, using the form of simple functions and (*), we see that the
sequence {

∫ T
0 sk(t)dt}∞k=1 is Cauchy in X , and so converges in X .



Bochner Integration

Theorem A.E.8. A strongly measurable function u : [0,T ]→ X is
integrable if and only if the map t 7→ ‖u(t)‖X is integrable. In this
case,

‖
∫ T

0
u(t)dt‖X ≤

∫ T

0
‖u(t)‖Xdt,

and

〈v∗,
∫ T

0
u(t)dt〉 =

∫ T

0
〈v∗, u(t)〉dt

for all v∗ ∈ X ∗.



Bochner Integration

Note. As an important special case of the latter claim, suppose X
and Y are two Banach spaces, and X is continuously embedded in
Y . Recalling that this means that the identity map I : X → Y is a
bounded linear operator, we see that

I

∫ T

0
u(t)dt =

∫ T

0
Iu(t)dt.

I.e., the integrals associated with u : [0,T ]→ X and
Iu : [0,T ]→ Y agree.



The Spaces Lp(0,T ;X )

Definition. We denote by Lp(0,T ;X ) the space of all strongly
measurable functions u : [0,T ]→ X so that

‖u‖Lp(0,T ;X ) :=
(∫ T

0
‖u(t)‖pXdt

)1/p
<∞ (1 ≤ p <∞)

‖u‖Lp(0,T ;X ) := ess sup
0≤t≤T

‖u(t)‖X <∞ (p =∞).

For 1 ≤ p ≤ ∞, we’ll denote by Lploc(0,T ;X ) the space of strongly
measurable functions u : [0,T ]→ X so that u ∈ Lp(a, b;X ) for all
[a, b] ⊂ (0,T ).

In the usual way, if u(t) = v(t) in X for a.e. t ∈ (0,T ), we equate
u and v in Lp(0,T ;X ).

Theorem 3. For any 1 ≤ p ≤ ∞, if X is a Banach space, then
Lp(0,T ;X ) is a Banach space.



LDCT

Theorem 4. Suppose X is a Banach space, and a sequence of
functions {fk(t)}∞k=1 ⊂ L1(0,T ;X ) satisfies

fk(t)→ f (t) in X

for a.e. t ∈ (0,T ). Suppose also that there exists g ∈ L1(0,T ;X )
so that

‖fk(t)‖X ≤ ‖g(t)‖X
for a.e. t ∈ (0,T ). Then f ∈ L1(0,T ;X ) and

lim
k→∞

∫ T

0
fk(t)dt =

∫ T

0
f (t)dt in X ,

with also

lim
k→∞

∫ T

0
‖fk(t)− f (t)‖Xdt = 0.



Approximation

Theorem 5. Suppose X is a Banach space and 1 ≤ p <∞. Then
the set C∞c ((0,T ),X ) is dense in Lp(0,T ;X ). In fact, more is
true. The collection of functions of the form

u(t) =
N∑
i=1

uiζi (t); ζi ∈ C∞c (0,T ;R), ui ∈ X

is dense in Lp(0,T ;X ).

Here, N isn’t fixed, but rather indicates that the sums are finite.



Mollification in L1
loc(0,T ;X )

Let

η(t) =

{
Ce

1
t2−1 |t| < 1

0 |t| ≥ 1,

where

C =
1∫ 1

−1 e
1

t2−1 dt
⇒
∫ +∞

−∞
η(t)dt = 1.

Then η ∈ C∞(R) and spt (η) ⊂ [−1, 1]. As usual, we set

ηε(t) :=
1
ε
η(

t

ε
)⇒ spt ηε ⊂ (−ε, ε),

and also

f ε(t) := ηε ∗ f (t) =

∫ +∞

−∞
ηε(t − τ)f (τ)dτ

=

∫ t+ε

t−ε
ηε(t − τ)f (τ)dτ.



Mollification in L1
loc(0,T ;X )

Theorem 6. Let X denote a Banach space and suppose
f ∈ L1

loc(0,T ;X ) for some T > 0. For

f ε(t) := ηε ∗ f (t) in (ε,T − ε)

we have the following:

(i) f ε ∈ C∞(ε,T − ε;X ), and

∂kt f
ε(t) = (∂kt ηε) ∗ f (t); k = 1, 2, . . . .

(ii) f ε(t)→ f (t) in X as ε→ 0 for a.e. t ∈ (0,T ).

(iii) If f ∈ C ((0,T );X ) then f ε → f uniformly in X as ε→ 0 on
compact subsets of (0,T ).

(iv) If 1 ≤ p <∞ and f ∈ Lploc((0,T );X ), then f ε → f in
Lploc((0,T );X ) as ε→ 0.


