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Weak Derivatives

Definition. We say that a function u ∈ L1(0,T ;X ) is weakly
differentiable on (0,T ) if there exists a function v ∈ L1(0,T ;X ) so
that ∫ T

0
u(t)φ′(t)dt = −

∫ T

0
v(t)φ(t)dt

for all φ ∈ C∞c (0,T ;R). We say that v is the weak derivative of u
and write u′ = v .

Notes. 1. The φ are our usual test functions, taking values in R.

2. We’re following the convention Evans adopts and using
u ∈ L1(0,T ;X ), but we could also use u ∈ L1

loc(0,T ;X ).



Weak Derivatives

3. Suppose X and Y are Banach spaces with X continuously
embedded in Y , and denote by I : X → Y the identity map. In
addition, suppose u ∈ L1(0,T ;X ) and (Iu)′ ∈ L1(0,T ;Y ). Then
according to the note following Theorem A.E.8, we can write

I
(∫ T

0
u(t)φ′(t)dt

)
=

∫ T

0
(Iu(t))φ′(t)dt = −

∫ T

0
(Iu)′(t)φ(t)dt.

If we identify u with Iu, we can view (Iu)′ as the Y -valued
derivative of the X -valued function u.



The Sobolev Space W 1,p(0,T ;X )

Definition. We denote by W 1,p(0,T ;X ) the space of all functions
u ∈ Lp(0,T ;X ) so that u′ exists in the weak sense and belongs to
Lp(0,T ;X ). We equip W 1,p(0,T ;X ) with the norms

‖u‖W 1,p(0,T ;X ) =
(∫ T

0
‖u(t)‖pX + ‖u′(t)‖pXdt

)1/p
(1 ≤ p <∞)

‖u‖W 1,p(0,T ;X ) = ess sup
0≤t≤T

(
‖u(t)‖X + ‖u′(t)‖X

)
(p =∞).

We will use the notation H1(0,T ;X ) = W 1,2(0,T ;X ).

Theorem 7. For any 1 ≤ p ≤ ∞, if X is a Banach space, then
W 1,p(0,T ;X ) is a Banach space.



Sobolev Embedding and Calculus

Theorem 5.9.2. Let u ∈W 1,p(0,T ;X ) for some 1 ≤ p ≤ ∞.
Then:

(i) u ∈ C ([0,T ];X ) (for some version of u)

(ii) For all 0 ≤ s ≤ t ≤ T

u(t) = u(s) +

∫ t

s
u′(τ)dτ.

(iii) There exists a constant C , depending only on T , so that

‖u‖C([0,T ];X ) ≤ C‖u‖W 1,p(0,T ;X ).

Note. Here, for the variable t, we have n = 1, so formally,
Reg (W 1,p(0,T ;X )) = 1− 1

p ≥ 0 for all 1 ≤ p ≤ ∞.



Proof of Theorem 5.9.2

0. Two familiar observations will come up during this proof in a
new setting. First, if u ∈ Lp(0,T ;X ), then since (0,T ) is bounded,
we can conclude that u ∈ Lq(0,T ;X ) for all 1 ≤ q ≤ p. Second, if
u ∈ L1(0,T ;X ) then ∫ t

0
u(s)ds

is continuous as a function of t.

1. We let ηε(t) denote the usual real-valued mollifer, and set

uε(t) = ηε ∗ u(t) in (ε,T − ε).

We know from Theorem 6 (i) that uε ∈ C∞(ε,T − ε;X ), and

uε ′(t) = η′ε ∗ u(t) in (ε,T − ε).



Proof of Theorem 5.9.2

Claim. uε ′(t) = ηε ∗ u′(t) for all t ∈ (ε,T − ε).

We did this calculation in the proof of Theorem 5.3.1, but there’s
no harm in doing it in this new setting as well. We write

uε ′(t) = η′ε ∗ u(t) =

∫ +∞

−∞
η′ε(t − τ)u(τ)dτ

= −
∫ +∞

−∞
∂τηε(t − τ)u(τ)dτ.

For t ∈ (ε,T − ε), ηε(t − τ) is 0 whenever u is undefined, but as
Evans notes, we can extend u by 0 to R if we like.

Here, for each t ∈ (ε,T − ε), ηε(t − ·) ∈ C∞c (0,T ;R), so in
particular ηε(t − τ) is a valid test function on (0,T ).



Proof of Theorem 5.9.2

Since u is weakly differentiable on (0,T ), we can conclude that for
each t ∈ (ε,T − ε),

−
∫ +∞

−∞
∂τηε(t − τ)u(τ)dτ = −

∫ T

0
∂τηε(t − τ)u(τ)dτ

=

∫ T

0
ηε(t − τ)u′(τ)dτ =

∫ +∞

−∞
ηε(t − τ)u′(τ)dτ,

and this is the claim.

According to Theorem 6 (ii), we know that as ε→ 0

uε(t)→ u(t) in X for a.e. t ∈ (0,T ),

and, since uε ′(t) = ηε ∗ u′(t), with u′ ∈ Lp(0,T ;X ), we know that

uε ′ → u′ in Lploc(0,T ;X ).



Proof of Theorem 5.9.2

It follows from this latter convergence that

uε ′ → u′ in L1
loc(0,T ;X ).

Notice that if p =∞, then we don’t have convergence in
L∞loc(0,T ;X ), but we still have convergence in L1

loc(0,T ;X ).

According to Theorem 2, for any 0 < s < t < T we can write

uε(t) = uε(s) +

∫ t

s
uε ′(τ)dτ.

Using the pointwise convergence of uε(t) and the L1
loc(0,T ;X )

convergence of uε ′, we can conclude that for a.e. 0 < s < t < T
we have

u(t) = u(s) +

∫ t

s
u′(τ)dτ.

Since the integral is continuous in both s and t, we see that in fact
u is continuous on [0,T ]. This gives both (i) and (ii).



Proof of Theorem 5.9.2

2. For Item (iii), we can use Theorem A.E.8 to write

‖u(t)‖X ≤
∥∥∥∥u(s) +

∫ t

s
u′(τ)dτ

∥∥∥∥
X

≤‖u(s)‖X +

∫ t

s
‖u′(τ)‖Xdτ. (*)

We now integrate this relation with respect to s to see that

T‖u(t)‖X ≤
∫ T

0
‖u(s)‖Xds +

∫ T

0

∫ t

s
‖u′(τ)‖Xdτds

≤
∫ T

0
‖u(s)‖Xds + T

∫ T

0
‖u′(τ)‖dτ.

Dividing by T , we see that there exists a constant C̃ so that

‖u(t)‖X ≤ C̃

∫ T

0
‖u(t)‖X + ‖u′(t)‖Xdt.



Proof of Theorem 5.9.2

The right-hand side does not depend on t, so we can take the
maximum over t ∈ [0,T ] to see that

‖u‖C([0,T ];X ) ≤ C̃

∫ T

0
‖u(t)‖X + ‖u′(t)‖Xdt.

Since this integration is over a bounded domain, we can use
Hölder’s inequality in the usual way to get the claimed estimate. �



Sobolev Embedding and More Calculus

Notes. 1. While studying second order parabolic PDE, we will
often work with functions u ∈ L2(0,T ;H1

0 (U)) for which
u′ ∈ L2(0,T ;H−1(U)). Intuitively, we can understand this by
considering the heat equation

ut = ∆u.

In general, we expect the Laplacian to reduce the regularity of a
function space by 2, so if u ∈ Hm(U), then ∆u ∈ Hm−2(U).

Correspondingly, if u : [0,T ]→ Hm(U) is a solution of the heat
equation, we expect u′ : [0,T ]→ Hm−2(U). The case described
above corresponds (very formally!) with m = 1.



Sobolev Embedding and More Calculus

2. In the setting of Note 1, we should keep in mind that we
continue to have u ∈ L1(0,T ;H1

0 (U)) and u′ ∈ L1(0,T ;H1
0 (U)), as

specified in our definition of weak differentiability.

We recall that H1
0 (U) is continuously embedded in H−1(U), and

use the third note following our definition of weak derivatives to
view the weak derivative of u as (Iu)′ ∈ L1(0,T ;H−1(U)).

When we write u ∈ L2(0,T ;H1
0 (U)), we mean that this is the case

in addition to u ∈ L1(0,T ;H1
0 (U)) , and likewise when we write

u′ ∈ L2(0,T ;H−1(U)), we mean that in addition to
(Iu)′ ∈ L1(0,T ;H−1(U)) we have (Iu)′ ∈ L2(0,T ;H−1(U)).



Sobolev Embedding and More Calculus

Theorem 5.9.3. Suppose u ∈ L2(0,T ;H1
0 (U)) and

u′ ∈ L2(0,T ;H−1(U)). Then:

(i) u ∈ C ([0,T ]; L2(U)) (for some version of u)

(ii) The mapping t 7→ ‖u(t)‖L2(U) is absolutely continuous, and

d

dt
‖u(t)‖2L2(U) = 2〈u′(t), u(t)〉,

for a.e. 0 < t < T .

(iii) There exists a constant C , depending only on T , so that

‖u‖C([0,T ];L2(U)) ≤ C
(
‖u‖L2(0,T ;H1

0 (U)) + ‖u′‖L2(0,T ;H−1(U))

)
.



Proof of Theorem 5.9.3

1. First, we extend u (by 0) to a slightly larger interval
[−σ,T + σ], σ > 0, so that we’ll be able to evaluate mollifications
of u on the full set [0,T ].

For 0 < ε, δ < σ, we set uε = ηε ∗ u and uδ = ηδ ∗ u. Then, for any
t ∈ (0,T )

d

dt
‖uε(t)− uδ(t)‖2L2(U) =

d

dt

∫
U

(uε(t)− uδ(t))2d~x

= 2
∫
U

(uε(t)− uδ(t))(uε ′(t)− uδ ′(t))d~x

= 2(uε ′(t)− uδ ′(t), uε(t)− uδ(t))L2(U).

where we differentiate under the integral in the usual way with
difference quotients and LDCT. Notice that in this last calculation,
uε ′(t) = (η′ε ∗ u)(t) ∈ H1

0 (U).



Proof of Theorem 5.9.3

Integrating this relation, we obtain

‖uε(t)− uδ(t)‖2L2(U) = ‖uε(s)− uδ(s)‖2L2(U)

+2
∫ t

s
(uε ′(τ) − uδ ′(τ), uε(τ)− uδ(τ))L2(U)dτ, (*)

for all 0 ≤ s, t ≤ T . From Item (iii) of Theorem 5.9.1,

(uε ′(τ)− uδ ′(τ), uε(τ)− uδ(τ))L2(U)

= 〈uε ′(τ)− uδ ′(τ), uε(τ)− uδ(τ)〉,

where for the right-hand side we mean the action of
uε ′(τ)− uδ ′(τ), viewed as an element of H−1(U), on
uε(τ)− uδ(τ) ∈ H1

0 (U).

If we compute the supremum of both sides of (*) over t ∈ [0,T ],
we obtain the inequality on the next slide.



Proof of Theorem 5.9.3

We can now compute

sup
0≤t≤T

‖uε(t)− uδ(t)‖2L2(U) ≤‖u
ε(s)− uδ(s)‖2L2(U)

+2
∫ T

0
‖uε ′(τ)− uδ ′(τ) ‖H−1(U)‖uε(τ)− uδ(τ)‖H1(U)dτ

≤ ‖uε(s)− uδ(s)‖2L2(U)+

∫ T

0
‖uε ′(τ)− uδ ′(τ)‖2H−1(U)dτ

+

∫ T

0
‖uε(τ)− u(τ)‖2H1(U)dτ

≤ ‖uε(s)− uδ(s)‖2L2(U)+ ‖u
ε ′ − uδ ′‖2L2(0,T ;H−1(U))

+‖uε(τ)− uδ(τ) ‖2L2(0,T ;H1
0 (U)).



Proof of Theorem 5.9.3

I.e., we have

‖uε − uδ‖C([0,T ];L2(U)) ≤‖uε(s)− uδ(s)‖2L2(U)

+‖uε ′ − uδ ′ ‖2L2(0,T ;H−1(U)) + ‖uε − uδ‖2L2(0,T ;H1
0 (U)).

Since u ∈ L2(0,T ;H1
0 (U)), we know from Theorem 6 (ii) that

uε(t)→ u(t) in H1
0 (U) for a.e. t ∈ (0,T ). We choose s ∈ (0,T )

to be one of these values.

We also know from Theorem 6 (iv) that as ε→ 0

uε → u in L2
loc(−σ,T + σ,H1

0 (U))

uε ′ → u′ in L2
loc(−σ,T + σ,H−1(U)).

Combining these observations, we see that {uε} is Cauchy in
C ([0,T ]; L2(U)), and so there is some v ∈ C ([0,T ]; L2(U)) so that
uε → v in C ([0,T ]; L2(U)).



Proof of Theorem 5.9.3

Using again the observation that uε(t)→ u(t) in H1
0 (U) for a.e.

t ∈ (0,T ), we see that u(t) = v(t) for a.e. t ∈ (0,T ). We can
conclude that v is a continuous version of u, giving (i).

2. For (ii), we can use the same argument as in Step 1 to see that

‖uε(t)‖2L2(U) = ‖uε(s)‖2L2(U) + 2
∫ t

s
〈uε ′(τ), uε(τ)〉dτ,

for all 0 ≤ s, t ≤ T . We can take the limit as ε→ 0 in this
expression, noting as above that ‖uε(t)‖2L2(U) → ‖u(t)‖L2(U) for
a.e. t ∈ (0,T ).

Let’s check that

lim
ε→0

∫ t

s
〈uε ′(τ), uε(τ)〉dτ =

∫ t

s
〈u′(τ), u(τ)〉dτ.



Proof of Theorem 5.9.3

For this, we compute

∣∣∣ ∫ t

s
〈uε ′(τ), uε(τ)〉dτ−

∫ t

s
〈u′(τ), u(τ)〉dτ

∣∣∣
≤
∣∣∣ ∫ t

s
〈uε ′(τ), uε(τ)〉 − 〈uε ′(τ), u(τ)〉dτ

∣∣∣
+
∣∣∣ ∫ t

s
〈uε ′(τ), u(τ)〉 − 〈u′(τ), u(τ)〉dτ

∣∣∣
≤
∫ T

0
‖uε ′(τ)‖H−1(U) ‖uε(τ)− u(τ)‖H1(U)dτ

+

∫ T

0
‖uε ′(τ)− u′(τ) ‖H−1(U)‖u(τ)‖H1(U)dτ.



Proof of Theorem 5.9.3

We can now apply Hölder’s inequality to each of these last two
integrals. E.g., for the first, we have∫ T

0
‖uε ′(τ)‖H−1(U) ‖uε(τ)− u(τ)‖H1(U)dτ

≤
(∫ T

0
‖uε ′(τ)‖2H−1(U) dτ

)1/2(∫ T

0
‖uε(τ)− u(τ)‖2H1(U)dτ

)1/2

= ‖uε ′‖L2(0,T ;H−1(U)) ‖uε − u‖L2(0,T ;H1(U))
ε→0→ 0.

The second is similar. We conclude that

‖u(t)‖2L2(U) = ‖u(s)‖2L2(U) + 2
∫ t

s
〈u′(τ), u(τ)〉dτ, (**)

for a.e. 0 < s, t < T , and if we take u to be its continuous version,
we must have the relation for all 0 ≤ s, t ≤ T . Since
〈u′(τ), u(τ)〉 ∈ L1(0,T ), we can conclude that ‖u(t)‖2L2(U) is
absolutely continuous. Upon differentiation of (**) we obtain (ii).



Proof of Theorem 5.9.3

3. For (iii) if we integrate our relation

‖u(t)‖2L2(U) = ‖u(s)‖2L2(U) + 2
∫ t

s
〈u′(τ), u(τ)〉dτ,

in s on the interval [0,T ], we see that

T‖u(t)‖2L2(U) =

∫ T

0
‖u(s)‖2L2(U)ds + 2

∫ T

0

∫ t

s
〈u′(τ), u(τ)〉dτds

≤ ‖u ‖2L2(0,T ;L2(U)) + 2
∫ T

0

∫ t

s
‖u′(τ)‖H−1(U)‖u(τ)‖H1(U)dτ

≤ ‖u ‖2L2(0,T ;L2(U)) + 2T
∫ T

0
‖u′(τ)‖H−1(U)‖u(τ)‖H1(U)dτ

≤ ‖u ‖2L2(0,T ;L2(U)) + T

∫ T

0
‖u′(τ)‖2H−1(U) + ‖u(τ)‖2H1(U)dτ

= ‖u ‖2L2(0,T ;L2(U)) + T
(
‖u′‖2L2(0,T ;H−1(U)) + ‖u‖2L2(0,T ;H1

0 (U))

)
.



Proof of Theorem 5.9.3

Since the right-hand side does not depend on t, we can compute
the maximum over t ∈ [0,T ] on both sides to see that (also
dividing by T and taking a square root)

‖u‖C([0,T ];L2(U)) ≤ C̃
(
‖u‖2L2(0,T ;H1

0 (U)) + ‖u′‖2L2(0,T ;H−1(U))

)1/2

≤ C̃
(
‖u‖L2(0,T ;H1

0 (U)) + ‖u′‖L2(0,T ;H−1(U))

)
,

and this is the claim. �


