Second Order Parabolic PDE: Background on Function Spaces Involving Time, Part II

MATH 612, Texas A\&M University

Spring 2020

Weak Derivatives

Definition. We say that a function $u \in L^{1}(0, T ; X)$ is weakly differentiable on $(0, T)$ if there exists a function $v \in L^{1}(0, T ; X)$ so that

$$
\int_{0}^{T} u(t) \phi^{\prime}(t) d t=-\int_{0}^{T} v(t) \phi(t) d t
$$

for all $\phi \in C_{c}^{\infty}(0, T ; \mathbb{R})$. We say that v is the weak derivative of u and write $u^{\prime}=v$.

Notes. 1. The ϕ are our usual test functions, taking values in \mathbb{R}.
2. We're following the convention Evans adopts and using $u \in L^{1}(0, T ; X)$, but we could also use $u \in L_{\text {loc }}^{1}(0, T ; X)$.

Weak Derivatives

3. Suppose X and Y are Banach spaces with X continuously embedded in Y, and denote by $I: X \rightarrow Y$ the identity map. In addition, suppose $u \in L^{1}(0, T ; X)$ and $(I u)^{\prime} \in L^{1}(0, T ; Y)$. Then according to the note following Theorem A.E.8, we can write

$$
I\left(\int_{0}^{T} u(t) \phi^{\prime}(t) d t\right)=\int_{0}^{T}(I u(t)) \phi^{\prime}(t) d t=-\int_{0}^{T}(I u)^{\prime}(t) \phi(t) d t
$$

If we identify u with $l u$, we can view $(I u)^{\prime}$ as the Y-valued derivative of the X-valued function u.

The Sobolev Space $W^{1, p}(0, T ; X)$
Definition. We denote by $W^{1, p}(0, T ; X)$ the space of all functions $u \in L^{p}(0, T ; X)$ so that u^{\prime} exists in the weak sense and belongs to $L^{p}(0, T ; X)$. We equip $W^{1, p}(0, T ; X)$ with the norms

$$
\begin{aligned}
&\|u\|_{W^{1, p}(0, T ; X)}=\left(\int_{0}^{T}\|u(t)\|_{X}^{p}+\left\|u^{\prime}(t)\right\|_{X}^{p} d t\right)^{1 / p} \quad(1 \leq p<\infty) \\
&\|u\|_{W^{1, p}(0, T ; X)}=\underset{0 \leq t \leq T}{\operatorname{ess} \sup }\left(\|u(t)\|_{X}+\left\|u^{\prime}(t)\right\|_{X}\right) \quad(p=\infty)
\end{aligned}
$$

We will use the notation $H^{1}(0, T ; X)=W^{1,2}(0, T ; X)$.

Theorem 7. For any $1 \leq p \leq \infty$, if X is a Banach space, then $W^{1, p}(0, T ; X)$ is a Banach space.

Sobolev Embedding and Calculus

Theorem 5.9.2. Let $u \in W^{1, p}(0, T ; X)$ for some $1 \leq p \leq \infty$. Then:
(i) $u \in C([0, T] ; X)$ (for some version of $u)$
(ii) For all $0 \leq s \leq t \leq T$

$$
u(t)=u(s)+\int_{s}^{t} u^{\prime}(\tau) d \tau
$$

(iii) There exists a constant C, depending only on T, so that

$$
\|u\|_{C([0, T] ; X)} \leq C\|u\|_{W^{1, p}(0, T ; X)} .
$$

Note. Here, for the variable t, we have $n=1$, so formally, $\operatorname{Reg}\left(W^{1, p}(0, T ; X)\right)=1-\frac{1}{p} \geq 0$ for all $1 \leq p \leq \infty$.

Proof of Theorem 5.9.2

0 . Two familiar observations will come up during this proof in a new setting. First, if $u \in L^{p}(0, T ; X)$, then since $(0, T)$ is bounded, we can conclude that $u \in L^{q}(0, T ; X)$ for all $1 \leq q \leq p$. Second, if $u \in L^{1}(0, T ; X)$ then

$$
\int_{0}^{t} u(s) d s
$$

is continuous as a function of t.

1. We let $\eta_{\epsilon}(t)$ denote the usual real-valued mollifer, and set

$$
u^{\epsilon}(t)=\eta_{\epsilon} * u(t) \quad \text { in }(\epsilon, T-\epsilon)
$$

We know from Theorem 6 (i) that $u^{\epsilon} \in C^{\infty}(\epsilon, T-\epsilon ; X)$, and

$$
u^{\epsilon \prime}(t)=\eta_{\epsilon}^{\prime} * u(t) \quad \text { in }(\epsilon, T-\epsilon)
$$

Proof of Theorem 5.9.2

Claim. $u^{\epsilon}(t)=\eta_{\epsilon} * u^{\prime}(t)$ for all $t \in(\epsilon, T-\epsilon)$.
We did this calculation in the proof of Theorem 5.3.1, but there's no harm in doing it in this new setting as well. We write

$$
\begin{aligned}
u^{\epsilon \prime}(t) & =\eta_{\epsilon}^{\prime} * u(t)=\int_{-\infty}^{+\infty} \eta_{\epsilon}^{\prime}(t-\tau) u(\tau) d \tau \\
& =-\int_{-\infty}^{+\infty} \partial_{\tau} \eta_{\epsilon}(t-\tau) u(\tau) d \tau
\end{aligned}
$$

For $t \in(\epsilon, T-\epsilon), \eta_{\epsilon}(t-\tau)$ is 0 whenever u is undefined, but as Evans notes, we can extend u by 0 to \mathbb{R} if we like.

Here, for each $t \in(\epsilon, T-\epsilon), \eta_{\epsilon}(t-\cdot) \in C_{c}^{\infty}(0, T ; \mathbb{R})$, so in particular $\eta_{\epsilon}(t-\tau)$ is a valid test function on $(0, T)$.

Proof of Theorem 5.9.2

Since u is weakly differentiable on $(0, T)$, we can conclude that for each $t \in(\epsilon, T-\epsilon)$,

$$
\begin{aligned}
& -\int_{-\infty}^{+\infty} \partial_{\tau} \eta_{\epsilon}(t-\tau) u(\tau) d \tau=-\int_{0}^{T} \partial_{\tau} \eta_{\epsilon}(t-\tau) u(\tau) d \tau \\
& \quad=\int_{0}^{T} \eta_{\epsilon}(t-\tau) u^{\prime}(\tau) d \tau=\int_{-\infty}^{+\infty} \eta_{\epsilon}(t-\tau) u^{\prime}(\tau) d \tau
\end{aligned}
$$

and this is the claim.
According to Theorem 6 (ii), we know that as $\epsilon \rightarrow 0$

$$
u^{\epsilon}(t) \rightarrow u(t) \quad \text { in } X \text { for a.e. } t \in(0, T)
$$

and, since $u^{\epsilon \prime}(t)=\eta_{\epsilon} * u^{\prime}(t)$, with $u^{\prime} \in L^{p}(0, T ; X)$, we know that

$$
u^{\epsilon \prime} \rightarrow u^{\prime} \quad \text { in } L_{\operatorname{loc}}^{p}(0, T ; X)
$$

Proof of Theorem 5.9.2

It follows from this latter convergence that

$$
u^{\epsilon \prime} \rightarrow u^{\prime} \quad \text { in } L_{\mathrm{loc}}^{1}(0, T ; X)
$$

Notice that if $p=\infty$, then we don't have convergence in $L_{\text {loc }}^{\infty}(0, T ; X)$, but we still have convergence in $L_{\text {loc }}^{1}(0, T ; X)$.

According to Theorem 2, for any $0<s<t<T$ we can write

$$
u^{\epsilon}(t)=u^{\epsilon}(s)+\int_{s}^{t} u^{\epsilon \prime}(\tau) d \tau
$$

Using the pointwise convergence of $u^{\epsilon}(t)$ and the $L_{\text {loc }}^{1}(0, T ; X)$ convergence of $u^{\epsilon \prime}$, we can conclude that for a.e. $0<s<t<T$ we have

$$
u(t)=u(s)+\int_{s}^{t} u^{\prime}(\tau) d \tau
$$

Since the integral is continuous in both s and t, we see that in fact u is continuous on $[0, T]$. This gives both (i) and (ii).

Proof of Theorem 5.9.2
2. For Item (iii), we can use Theorem A.E. 8 to write

$$
\begin{align*}
\|u(t)\|_{x} & \leq\left\|u(s)+\int_{s}^{t} u^{\prime}(\tau) d \tau\right\|_{x} \\
& \leq\|u(s)\|_{x}+\int_{s}^{t}\left\|u^{\prime}(\tau)\right\|_{x} d \tau \tag{*}
\end{align*}
$$

We now integrate this relation with respect to s to see that

$$
\begin{aligned}
T\|u(t)\|_{x} & \leq \int_{0}^{T}\|u(s)\|_{X} d s+\int_{0}^{T} \int_{s}^{t}\left\|u^{\prime}(\tau)\right\|_{X} d \tau d s \\
& \leq \int_{0}^{T}\|u(s)\|_{X} d s+T \int_{0}^{T}\left\|u^{\prime}(\tau)\right\| d \tau
\end{aligned}
$$

Dividing by T, we see that there exists a constant \tilde{C} so that

$$
\|u(t)\|_{x} \leq \tilde{C} \int_{0}^{T}\|u(t)\|_{x}+\left\|u^{\prime}(t)\right\|_{x} d t
$$

Proof of Theorem 5.9.2

The right-hand side does not depend on t, so we can take the maximum over $t \in[0, T]$ to see that

$$
\|u\|_{C([0, T] ; X)} \leq \tilde{C} \int_{0}^{T}\|u(t)\|_{x}+\left\|u^{\prime}(t)\right\|_{x} d t
$$

Since this integration is over a bounded domain, we can use Hölder's inequality in the usual way to get the claimed estimate. \square

Sobolev Embedding and More Calculus

Notes. 1. While studying second order parabolic PDE, we will often work with functions $u \in L^{2}\left(0, T ; H_{0}^{1}(U)\right)$ for which $u^{\prime} \in L^{2}\left(0, T ; H^{-1}(U)\right)$. Intuitively, we can understand this by considering the heat equation

$$
u_{t}=\Delta u
$$

In general, we expect the Laplacian to reduce the regularity of a function space by 2 , so if $u \in H^{m}(U)$, then $\Delta u \in H^{m-2}(U)$.

Correspondingly, if $u:[0, T] \rightarrow H^{m}(U)$ is a solution of the heat equation, we expect $u^{\prime}:[0, T] \rightarrow H^{m-2}(U)$. The case described above corresponds (very formally!) with $m=1$.

Sobolev Embedding and More Calculus

2. In the setting of Note 1 , we should keep in mind that we continue to have $u \in L^{1}\left(0, T ; H_{0}^{1}(U)\right)$ and $u^{\prime} \in L^{1}\left(0, T ; H_{0}^{1}(U)\right)$, as specified in our definition of weak differentiability.

We recall that $H_{0}^{1}(U)$ is continuously embedded in $H^{-1}(U)$, and use the third note following our definition of weak derivatives to view the weak derivative of u as $(I u)^{\prime} \in L^{1}\left(0, T ; H^{-1}(U)\right)$.

When we write $u \in L^{2}\left(0, T ; H_{0}^{1}(U)\right)$, we mean that this is the case in addition to $u \in L^{1}\left(0, T ; H_{0}^{1}(U)\right)$, and likewise when we write $u^{\prime} \in L^{2}\left(0, T ; H^{-1}(U)\right)$, we mean that in addition to $(I u)^{\prime} \in L^{1}\left(0, T ; H^{-1}(U)\right)$ we have $(I u)^{\prime} \in L^{2}\left(0, T ; H^{-1}(U)\right)$.

Sobolev Embedding and More Calculus

Theorem 5.9.3. Suppose $u \in L^{2}\left(0, T ; H_{0}^{1}(U)\right)$ and $u^{\prime} \in L^{2}\left(0, T ; H^{-1}(U)\right)$. Then:
(i) $u \in C\left([0, T] ; L^{2}(U)\right)$ (for some version of u)
(ii) The mapping $t \mapsto\|u(t)\|_{L^{2}(U)}$ is absolutely continuous, and

$$
\frac{d}{d t}\|u(t)\|_{L^{2}(U)}^{2}=2\left\langle u^{\prime}(t), u(t)\right\rangle,
$$

for a.e. $0<t<T$.
(iii) There exists a constant C, depending only on T, so that

$$
\|u\|_{C\left([0, T] ; L^{2}(U)\right)} \leq C\left(\|u\|_{L^{2}\left(0, T ; H_{0}^{1}(U)\right)}+\left\|u^{\prime}\right\|_{L^{2}\left(0, T ; H^{-1}(U)\right)}\right) .
$$

Proof of Theorem 5.9.3

1. First, we extend u (by 0) to a slightly larger interval
$[-\sigma, T+\sigma], \sigma>0$, so that we'll be able to evaluate mollifications of u on the full set $[0, T]$.

For $0<\epsilon, \delta<\sigma$, we set $u^{\epsilon}=\eta_{\epsilon} * u$ and $u^{\delta}=\eta_{\delta} * u$. Then, for any $t \in(0, T)$

$$
\begin{aligned}
\frac{d}{d t}\left\|u^{\epsilon}(t)-u^{\delta}(t)\right\|_{L^{2}(U)}^{2} & =\frac{d}{d t} \int_{U}\left(u^{\epsilon}(t)-u^{\delta}(t)\right)^{2} d \vec{x} \\
& =2 \int_{U}\left(u^{\epsilon}(t)-u^{\delta}(t)\right)\left(u^{\epsilon \prime}(t)-u^{\delta^{\prime}}(t)\right) d \vec{x} \\
& =2\left(u^{\epsilon \prime}(t)-u^{\delta^{\prime}}(t), u^{\epsilon}(t)-u^{\delta}(t)\right)_{L^{2}(U)} .
\end{aligned}
$$

where we differentiate under the integral in the usual way with difference quotients and LDCT. Notice that in this last calculation, $u^{\epsilon \prime}(t)=\left(\eta_{\epsilon}^{\prime} * u\right)(t) \in H_{0}^{1}(U)$.

Proof of Theorem 5.9.3

Integrating this relation, we obtain

$$
\begin{align*}
\| u^{\epsilon}(t)- & u^{\delta}(t)\left\|_{L^{2}(U)}^{2}=\right\| u^{\epsilon}(s)-u^{\delta}(s) \|_{L^{2}(U)}^{2} \\
& +2 \int_{s}^{t}\left(u^{\epsilon \prime}(\tau)-u^{\delta \prime}(\tau), u^{\epsilon}(\tau)-u^{\delta}(\tau)\right)_{L^{2}(U)} d \tau \tag{}
\end{align*}
$$

for all $0 \leq s, t \leq T$. From Item (iii) of Theorem 5.9.1,

$$
\begin{aligned}
\left(u^{\epsilon \prime}(\tau)-u^{\delta \prime}(\tau)\right. & \left., u^{\epsilon}(\tau)-u^{\delta}(\tau)\right)_{L^{2}(U)} \\
& =\left\langle u^{\epsilon \prime}(\tau)-u^{\delta \prime}(\tau), u^{\epsilon}(\tau)-u^{\delta}(\tau)\right\rangle
\end{aligned}
$$

where for the right-hand side we mean the action of $u^{\epsilon \prime}(\tau)-u^{\delta \prime}(\tau)$, viewed as an element of $H^{-1}(U)$, on $u^{\epsilon}(\tau)-u^{\delta}(\tau) \in H_{0}^{1}(U)$.
If we compute the supremum of both sides of $\left({ }^{*}\right)$ over $t \in[0, T]$, we obtain the inequality on the next slide.

Proof of Theorem 5.9.3

We can now compute

$$
\begin{aligned}
& \sup _{0 \leq t \leq T}\left\|u^{\epsilon}(t)-u^{\delta}(t)\right\|_{L^{2}(U)}^{2} \leq\left\|u^{\epsilon}(s)-u^{\delta}(s)\right\|_{L^{2}(U)}^{2} \\
& \quad+2 \int_{0}^{T}\left\|u^{\epsilon \prime}(\tau)-u^{\delta \prime}(\tau)\right\|_{H^{-1}(U)}\left\|u^{\epsilon}(\tau)-u^{\delta}(\tau)\right\|_{H^{1}(U)} d \tau \\
& \leq\left\|u^{\epsilon}(s)-u^{\delta}(s)\right\|_{L^{2}(U)}^{2}+\int_{0}^{T}\left\|u^{\epsilon \prime}(\tau)-u^{\delta \prime}(\tau)\right\|_{H^{-1}(U)}^{2} d \tau \\
& \quad+\int_{0}^{T}\left\|u^{\epsilon}(\tau)-u(\tau)\right\|_{H^{1}(U)}^{2} d \tau \\
& \leq\left\|u^{\epsilon}(s)-u^{\delta}(s)\right\|_{L^{2}(U)}^{2}+\left\|u^{\epsilon \prime}-u^{\delta \prime}\right\|_{L^{2}\left(0, T ; H^{-1}(U)\right)}^{2} \\
& \quad+\left\|u^{\epsilon}(\tau)-u^{\delta}(\tau)\right\|_{L^{2}\left(0, T ; H_{0}^{1}(U)\right)}^{2}
\end{aligned}
$$

Proof of Theorem 5.9.3

I.e., we have

$$
\begin{aligned}
& \left\|u^{\epsilon}-u^{\delta}\right\|_{C\left([0, T] ; L^{2}(U)\right)} \leq\left\|u^{\epsilon}(s)-u^{\delta}(s)\right\|_{L^{2}(U)}^{2} \\
& \quad+\left\|u^{\epsilon \prime}-u^{\delta \prime}\right\|_{L^{2}\left(0, T ; H^{-1}(U)\right)}^{2}+\left\|u^{\epsilon}-u^{\delta}\right\|_{L^{2}\left(0, T ; H_{0}^{1}(U)\right)}^{2}
\end{aligned}
$$

Since $u \in L^{2}\left(0, T ; H_{0}^{1}(U)\right)$, we know from Theorem 6 (ii) that $u^{\epsilon}(t) \rightarrow u(t)$ in $H_{0}^{1}(U)$ for a.e. $t \in(0, T)$. We choose $s \in(0, T)$ to be one of these values.

We also know from Theorem 6 (iv) that as $\epsilon \rightarrow 0$

$$
\begin{gathered}
u^{\epsilon} \rightarrow u \text { in } L_{\mathrm{loc}}^{2}\left(-\sigma, T+\sigma, H_{0}^{1}(U)\right) \\
u^{\epsilon \prime} \rightarrow u^{\prime} \text { in } L_{\mathrm{loc}}^{2}\left(-\sigma, T+\sigma, H^{-1}(U)\right) .
\end{gathered}
$$

Combining these observations, we see that $\left\{u^{\epsilon}\right\}$ is Cauchy in $C\left([0, T] ; L^{2}(U)\right)$, and so there is some $v \in C\left([0, T] ; L^{2}(U)\right)$ so that $u^{\epsilon} \rightarrow v$ in $C\left([0, T] ; L^{2}(U)\right)$.

Proof of Theorem 5.9.3

Using again the observation that $u^{\epsilon}(t) \rightarrow u(t)$ in $H_{0}^{1}(U)$ for a.e. $t \in(0, T)$, we see that $u(t)=v(t)$ for a.e. $t \in(0, T)$. We can conclude that v is a continuous version of u, giving (i).
2. For (ii), we can use the same argument as in Step 1 to see that

$$
\left\|u^{\epsilon}(t)\right\|_{L^{2}(U)}^{2}=\left\|u^{\epsilon}(s)\right\|_{L^{2}(U)}^{2}+2 \int_{s}^{t}\left\langle u^{\epsilon \prime}(\tau), u^{\epsilon}(\tau)\right\rangle d \tau
$$

for all $0 \leq s, t \leq T$. We can take the limit as $\epsilon \rightarrow 0$ in this expression, noting as above that $\left\|u^{\epsilon}(t)\right\|_{L^{2}(U)}^{2} \rightarrow\|u(t)\|_{L^{2}(U)}$ for a.e. $t \in(0, T)$.

Let's check that

$$
\lim _{\epsilon \rightarrow 0} \int_{s}^{t}\left\langle u^{\epsilon \prime}(\tau), u^{\epsilon}(\tau)\right\rangle d \tau=\int_{s}^{t}\left\langle u^{\prime}(\tau), u(\tau)\right\rangle d \tau
$$

Proof of Theorem 5.9.3

For this, we compute

$$
\begin{aligned}
& \left|\int_{s}^{t}\left\langle u^{\epsilon^{\prime}}(\tau), u^{\epsilon}(\tau)\right\rangle d \tau-\int_{s}^{t}\left\langle u^{\prime}(\tau), u(\tau)\right\rangle d \tau\right| \\
& \quad \leq\left|\int_{s}^{t}\left\langle u^{\epsilon \prime}(\tau), u^{\epsilon}(\tau)\right\rangle-\left\langle u^{\epsilon \prime}(\tau), u(\tau)\right\rangle d \tau\right| \\
& \quad+\left|\int_{s}^{t}\left\langle u^{\epsilon \prime}(\tau), u(\tau)\right\rangle-\left\langle u^{\prime}(\tau), u(\tau)\right\rangle d \tau\right| \\
& \quad \leq \int_{0}^{T}\left\|u^{\epsilon \prime}(\tau)\right\|_{H^{-1}(U)}\left\|u^{\epsilon}(\tau)-u(\tau)\right\|_{H^{1}(U)} d \tau \\
& \quad+\int_{0}^{T}\left\|u^{\epsilon \prime}(\tau)-u^{\prime}(\tau)\right\|_{H^{-1}(U)}\|u(\tau)\|_{H^{1}(U)} d \tau
\end{aligned}
$$

Proof of Theorem 5.9.3

We can now apply Hölder's inequality to each of these last two integrals. E.g., for the first, we have

$$
\begin{aligned}
& \int_{0}^{T}\left\|u^{\epsilon \prime}(\tau)\right\|_{H^{-1}(U)}\left\|u^{\epsilon}(\tau)-u(\tau)\right\|_{H^{1}(U)} d \tau \\
\leq & \left(\int_{0}^{T}\left\|u^{\epsilon \prime}(\tau)\right\|_{H^{-1}(U)}^{2} d \tau\right)^{1 / 2}\left(\int_{0}^{T}\left\|u^{\epsilon}(\tau)-u(\tau)\right\|_{H^{1}(U)}^{2} d \tau\right)^{1 / 2} \\
= & \left\|u^{\epsilon \prime}\right\|_{L^{2}\left(0, T ; H^{-1}(U)\right)}\left\|u^{\epsilon}-u\right\|_{L^{2}\left(0, T ; H^{1}(U)\right)} \xrightarrow{\epsilon \rightarrow 0} 0 .
\end{aligned}
$$

The second is similar. We conclude that

$$
\begin{equation*}
\|u(t)\|_{L^{2}(U)}^{2}=\|u(s)\|_{L^{2}(U)}^{2}+2 \int_{s}^{t}\left\langle u^{\prime}(\tau), u(\tau)\right\rangle d \tau \tag{**}
\end{equation*}
$$

for a.e. $0<s, t<T$, and if we take u to be its continuous version, we must have the relation for all $0 \leq s, t \leq T$. Since $\left\langle u^{\prime}(\tau), u(\tau)\right\rangle \in L^{1}(0, T)$, we can conclude that $\|u(t)\|_{L^{2}(U)}^{2}$ is absolutely continuous. Upon differentiation of $\left({ }^{* *}\right)$ we obtain (ii).

Proof of Theorem 5.9.3

3. For (iii) if we integrate our relation

$$
\|u(t)\|_{L^{2}(U)}^{2}=\|u(s)\|_{L^{2}(U)}^{2}+2 \int_{s}^{t}\left\langle u^{\prime}(\tau), u(\tau)\right\rangle d \tau
$$

in s on the interval $[0, T]$, we see that

$$
\begin{aligned}
& T\|u(t)\|_{L^{2}(U)}^{2}=\int_{0}^{T}\|u(s)\|_{L^{2}(U)}^{2} d s+2 \int_{0}^{T} \int_{s}^{t}\left\langle u^{\prime}(\tau), u(\tau)\right\rangle d \tau d s \\
& \leq\|u\|_{L^{2}\left(0, T ; L^{2}(U)\right)}^{2}+2 \int_{0}^{T} \int_{s}^{t}\left\|u^{\prime}(\tau)\right\|_{H^{-1}(U)}\|u(\tau)\|_{H^{1}(U)} d \tau \\
& \leq\|u\|_{L^{2}\left(0, T ; L^{2}(U)\right)}^{2}+2 T \int_{0}^{T}\left\|u^{\prime}(\tau)\right\|_{H^{-1}(U)}\|u(\tau)\|_{H^{1}(U)} d \tau \\
& \leq\|u\|_{L^{2}\left(0, T ; L^{2}(U)\right)}^{2}+T \int_{0}^{T}\left\|u^{\prime}(\tau)\right\|_{H^{-1}(U)}^{2}+\|u(\tau)\|_{H^{1}(U)}^{2} d \tau \\
& \quad=\|u\|_{L^{2}\left(0, T ; L^{2}(U)\right)}^{2}+T\left(\left\|u^{\prime}\right\|_{L^{2}\left(0, T ; H^{-1}(U)\right)}^{2}+\|u\|_{L^{2}\left(0, T ; H_{0}^{1}(U)\right)}^{2}\right)
\end{aligned}
$$

Proof of Theorem 5.9.3

Since the right-hand side does not depend on t, we can compute the maximum over $t \in[0, T]$ on both sides to see that (also dividing by T and taking a square root)

$$
\begin{aligned}
\|u\|_{C\left([0, T] ; L^{2}(U)\right)} & \leq \tilde{C}\left(\|u\|_{L^{2}\left(0, T ; H_{0}^{1}(U)\right)}^{2}+\left\|u^{\prime}\right\|_{L^{2}\left(0, T ; H^{-1}(U)\right)}^{2}\right)^{1 / 2} \\
& \leq \tilde{C}\left(\|u\|_{L^{2}\left(0, T ; H_{0}^{1}(U)\right)}+\left\|u^{\prime}\right\|_{L^{2}\left(0, T ; H^{-1}(U)\right)}\right)
\end{aligned}
$$

and this is the claim.

