Second Order Parabolic PDE: Weak Solutions and Galerkin Approximations

MATH 612, Texas A\&M University

Spring 2020

Second Order Parabolic PDE

Let $U \subset \mathbb{R}^{n}$ be open and bounded, and for $T>0$ set

$$
U_{T}:=U \times(0, T] .
$$

We'll consider equations of the form

$$
\begin{align*}
& u_{t}+L u=f ; \tag{P}\\
& \text { in } U_{T} \\
& u=0 ; \\
& \text { on } \partial U \times[0, T] \\
& u=g ; \\
& \text { on } U \times\{t=0\},
\end{align*}
$$

where L denotes a partial differential operator either in divergence form

$$
L u:=-\sum_{i, j=1}^{n}\left(a^{i j}(\vec{x}, t) u_{x_{i}}\right)_{x_{j}}+\sum_{i=1}^{n} b^{i}(\vec{x}, t) u_{x_{i}}+c(\vec{x}, t) u
$$

or non-divergence form

$$
L u:=-\sum_{i, j=1}^{n} a^{i j}(\vec{x}, t) u_{x_{i} x_{j}}+\sum_{i=1}^{n} b^{i}(\vec{x}, t) u_{x_{i}}+c(\vec{x}, t) u .
$$

Uniform Parabolicity

Definition. For either form of the operator L, we say that the partial differential operator $\partial_{t}+L$ is uniformly parabolic in U_{T} if there exists a constant $\theta>0$ so that

$$
\sum_{i, j=1}^{n} a^{i j}(\vec{x}, t) \xi_{i} \xi_{j} \geq \theta|\vec{\xi}|^{2}
$$

for a.e. $(\vec{x}, t) \in U_{T}$ and all $\vec{\xi} \in \mathbb{R}^{n}$. I.e., if we denote $A(\vec{x}, t)=\left(a^{i j}(\vec{x}, t)\right)$, then

$$
\vec{\xi}^{T} A(\vec{x}, t) \vec{\xi} \geq \theta|\vec{\xi}|^{2}
$$

for a.e. $(\vec{x}, t) \in U_{T}$ and all $\vec{\xi} \in \mathbb{R}^{n}$.
Notes. 1. For the heat equation, $L=-\Delta$, so that $A(\vec{x}, t)=I$, and we have

$$
\vec{\xi}^{T} A(\vec{x}, t) \vec{\xi}=|\vec{\xi}|^{2} .
$$

I.e., $\theta=1$.

Uniform Parabolicity

2. More generally, if $A(\vec{x}, t)$ is symmetric, then by the min-max principle, this condition holds if and only if the eigenvalues of $A(\vec{x}, t)$ are all bounded below by θ. Recall from last semester that a partial differential operator $\partial_{t}+L$ is parabolic if the matrix associated with its second order terms (including t) has 0 as one of its eigenvalues and its other eigenvalues all have the same sign. So an operator that is uniformly parabolic in U_{T} is certainly parabolic in U_{T}.

Basic Assumptions

In order to avoid repeated statements of assumptions, we'll collect our basic assumptions for this section here. These will be:

1. $U \subset \mathbb{R}^{n}$ is open and bounded, and $T>0$;
2. $a^{i j}=a^{i i}$ for all $i, j \in\{1,2, \ldots, n\}$;
3. $a^{i j}, b^{i}, c \in L^{\infty}\left(U_{T}\right)$ for all $i, j \in\{1,2, \ldots, n\}$;
4. The operator L is in divergence form and uniformly parabolic in U_{T};
5. $f \in L^{2}\left(U_{T}\right), g \in L^{2}(U)$.

We'll refer to this collection of assumptions as Assumptions (A).
Note. In this section, unless explicitly stated otherwise, (\cdot, \cdot) will denote $L^{2}(U)$ inner product, and $\langle\cdot, \cdot\rangle$ will denote the action of an element of $H^{-1}(U)$ on an element of $H_{0}^{1}(U)$.

The Time-Dependent Bilinear Form

Formally, if u is a smooth solution of

$$
u_{t}+L u=f
$$

with L in divergence form, we can multiply by a test function $\phi \in C_{c}^{\infty}(U)$ and proceed as in our section on elliptic operators to obtain the relation

$$
\left(u_{t}, \phi\right)+B[u, \phi ; t]=(f, \phi),
$$

for each $t \in[0, T]$, where
$B[u, \phi ; t]:=\int_{U}\left\{\sum_{i, j=1}^{n} a^{i j}(\vec{x}, t) u_{x_{i}} \phi_{x_{j}}+\sum_{i=1}^{n} b^{i}(\vec{x}, t) u_{x_{i}} \phi+c(\vec{x}, t) u \phi\right\} d \vec{x}$.
We'll use this to develop our weak formulation for (\mathcal{P}).

Notation

If $u(\cdot, t) \in H_{0}^{1}(U)$ for a.e. $t \in(0, T)$, then we'll regard u as a map $t \mapsto u(\cdot, t)$. In this section, following the convention that Evans adopts, we'll denote such maps with a bold \mathbf{u}. I.e.,

$$
\mathbf{u}(t)(\vec{x})=u(\vec{x}, t)
$$

and similarly for $\mathbf{f}(t)$. This allows us to express the strong form of (\mathcal{P}) as

$$
\mathbf{u}^{\prime}+L \mathbf{u}=\mathbf{f}, \quad \text { for a.e. } t \in(0, T)
$$

Here, we notice that since $f \in L^{2}\left(U_{T}\right)$, we have
$\|\mathbf{f}\|_{L^{2}\left(0, T ; L^{2}(U)\right)}^{2}=\int_{0}^{T}\|\mathbf{f}(t)\|_{L^{2}(U)}^{2} d t=\int_{0}^{T} \int_{U}|f(\vec{x}, t)|^{2} d \vec{x} d t<\infty$.
I.e., $f \in L^{2}\left(0, T ; L^{2}(U)\right)$.

Motivating the Weak Formulation
The associated weak form of this equation can be expressed as

$$
\left(\mathbf{u}^{\prime}, v\right)+B[\mathbf{u}, v ; t]=(\mathbf{f}, v),
$$

for all $v \in H_{0}^{1}(U)$ and a.e. $t \in(0, T)$. We see that

$$
\begin{aligned}
\left(\mathbf{u}^{\prime},\right. & v) \\
= & =-B[\mathbf{u}, v ; t]+(\mathbf{f}, v) \\
= & -\int_{U}\left\{\sum_{i, j=1}^{n} a^{i j} \mathbf{u}_{x_{i}} v_{x_{j}}+\sum_{i=1}^{n} b^{i} \mathbf{u}_{x_{i}} v+c \mathbf{u} v\right\}+(\mathbf{f}, v) \\
= & \int_{U}\left\{\left(\mathbf{f}-\sum_{i=1}^{n} b^{i} \mathbf{u}_{x_{i}}-c \mathbf{u}\right) v-\sum_{j=1}^{n}\left(\sum_{i=1}^{n} a^{i j} \mathbf{u}_{x_{i}}\right) v_{x_{j}}\right\} d \vec{x} \\
= & \int_{U}\left\{\mathbf{g}^{0} v+\sum_{j=1}^{n} \mathbf{g}^{j} v_{x_{j}}\right\} d \vec{x} .
\end{aligned}
$$

Motivating the Weak Formulation
I.e.,

$$
\left(\mathbf{u}^{\prime}, v\right)=\int_{U}\left\{\mathbf{g}^{0} v+\sum_{j=1}^{n} \mathbf{g}^{j} v_{x_{j}}\right\} d \vec{x}
$$

where for $\mathbf{u}(t) \in H_{0}^{1}(U)$, we have

$$
\begin{aligned}
& \mathbf{g}^{0}(t)=\mathbf{f}(t)-\sum_{i=1}^{n} b^{i}(\vec{x}, t) \mathbf{u}(t)_{x_{i}}-c(\vec{x}, t) \mathbf{u}(t) \in L^{2}(U) \\
& \mathbf{g}^{j}(t)=-\sum_{i=1}^{n} a^{i j}(\vec{x}, t) \mathbf{u}_{x_{i}} \in L^{2}(U)
\end{aligned}
$$

Motivating the Weak Formulation
If we compare with Theorem 5.9.1, we see that this suggests that we should have $\mathbf{u}^{\prime}(t) \in H^{-1}(U)$ for a.e. $t \in(0, T)$, with

$$
\begin{aligned}
\left\|\mathbf{u}^{\prime}(t)\right\|_{H^{-1}(U)} & \leq\left(\int_{U} \sum_{j=0}^{n}\left|\mathbf{g}^{j}(t)\right|^{2} d \vec{x}\right)^{1 / 2} \\
& \leq C\left(\|\mathbf{u}(t)\|_{H^{1}(U)}+\|\mathbf{f}(t)\|_{L^{2}(U)}\right)
\end{aligned}
$$

This motivates our weak formulation of (\mathcal{P}).

The Parabolic Weak Formulation
Definition. We say that a function $\mathbf{u} \in L^{2}\left(0, T ; H_{0}^{1}(U)\right)$, with $\mathbf{u}^{\prime} \in L^{2}\left(0, T ; H^{-1}(U)\right)$, is a weak solution of (\mathcal{P}) if
(i) $\left\langle\mathbf{u}^{\prime}, v\right\rangle+B[\mathbf{u}, v ; t]=(\mathbf{f}, v)$ for all $v \in H_{0}^{1}(U)$ and a.e. $t \in(0, T)$, and
(ii) $\mathbf{u}(0)=g$.

Note. We know from Theorem 5.9.3 that under these assumptions, we have $\mathbf{u} \in C\left([0, T] ; L^{2}(U)\right)$, so the pointwise evaluation $\mathbf{u}(0)=g$ is justified.

Galerkin Approximations

We'll approach existence by first constructing solutions to certain finite-dimensional approximations of the weak formulation of (\mathcal{P}), and then taking an appropriate limit. This method is named after the Russian mathematician Boris Galerkin (1871-1945).

To begin, let $\left\{w_{k}\right\}_{k=1}^{\infty}$ denote an orthogonal basis of $H_{0}^{1}(U)$ that is also an orthonormal basis of $L^{2}(U)$. For example, such a basis is constructed in the proof of Theorem 6.5.2 in Evans as eigenfunctions for the Laplacian operator $L=-\Delta$ on U.

We fix any $m \in\{1,2, \ldots\}$, and look for solutions of the weak formulation of (\mathcal{P}) of the form

$$
\mathbf{u}_{m}(t)=\sum_{k=1}^{m} d_{m}^{k}(t) w_{k},
$$

where the coefficient functions $\left\{d_{m}^{k}(t)\right\}_{k=1}^{m}$ are to be determined.

Galerkin Approximations

If we substitute this ansatz into the weak formulation of (\mathcal{P}), we obtain the relation
$\left\langle\sum_{k=1}^{m} d_{m}^{k \prime}(t) w_{k}, v\right\rangle+B\left[\sum_{k=1}^{m} d_{m}^{k}(t) w_{k}, v ; t\right]=(\mathbf{f}(t), v), \quad \forall v \in H_{0}^{1}(U)$,
and using linearity
$\sum_{k=1}^{m} d_{m}^{k \prime}(t)\left\langle w_{k}, v\right\rangle+\sum_{k=1}^{m} d_{m}^{k}(t) B\left[w_{k}, v ; t\right]=(f(t), v), \quad \forall v \in H_{0}^{1}(U)$.
Here, we have $w_{k} \in H_{0}^{1}(U)$ for each fixed $k \in\{1,2, \ldots, m\}$, so we can replace $\left\langle w_{k}, v\right\rangle$ with $\left(w_{k}, v\right)_{L^{2}(U)}$.

Galerkin Approximations

In fact, since $\mathbf{u}_{m}(t)$ is a finite-dimensional approximation of the solution, we expect that this is too much to ask, but we can think of replacing the requirement that this be true for all $v \in H_{0}^{1}(U)$ with the requirement that it be true for all $v \in \operatorname{Span}\left\{w_{j}\right\}_{j=1}^{m}$. I.e., we require

$$
\sum_{k=1}^{m} d_{m}^{k \prime}(t)\left(w_{k}, w_{j}\right)+\sum_{k=1}^{m} d_{m}^{k}(t) B\left[w_{k}, w_{j} ; t\right]=\left(\mathbf{f}(t), w_{j}\right)
$$

for all $j \in\{1,2, \ldots, m\}$. We set

$$
e^{j k}(t):=B\left[w_{k}, w_{j} ; t\right] \quad \text { and } \quad f^{j}(t):=\left(\mathbf{f}(t), w_{j}\right),
$$

and use orthonormality of $\left\{w_{k}\right\}_{k=1}^{n}$ to obtain the first-order system of ODE

$$
d_{m}^{j \prime}(t)=-\sum_{k=1}^{m} e^{j k}(t) d_{m}^{k}(t)+f^{j}(t), \quad j=1,2, \ldots m
$$

Galerkin Approximations

For initial values, we would like to set

$$
\mathbf{u}_{m}(0)=g \in L^{2}(U)
$$

but again this is too much to ask. Instead, we formally determine the coefficients $\left\{d_{m}^{k}(0)\right\}_{k=1}^{m}$ that we would need in order to have the relation

$$
g=\sum_{k=1}^{\infty} d_{m}^{k}(0) w_{k}
$$

Again using orthonormality of $\left\{w_{k}\right\}_{k=1}^{\infty}$, we see that

$$
d_{m}^{j}(0)=\left(g, w_{j}\right),
$$

for each $j \in\{1,2, \ldots, m\}$.

Galerkin Approximations

We now want to assert something about solvability for the ODE system

$$
\begin{aligned}
& d_{m}^{j \prime}(t)=-\sum_{k=1}^{m} e^{j k}(t) d_{m}^{k}(t)+f^{j}(t), \quad j=1,2, \ldots m \\
& d_{m}^{j}(0)=\left(g, w_{j}\right)
\end{aligned}
$$

and for this we need to better understand the nature of the coefficents $\left\{f^{j}(t)\right\}_{j=1}^{m}$ and $\left\{e^{j k}(t)\right\}_{j=1}^{m}$. First,

$$
\begin{aligned}
\left\|f^{j}\right\|_{L^{2}(0, T)}^{2} & =\int_{0}^{T}\left|\left(\mathbf{f}(t), w_{j}\right)\right|^{2} d t \stackrel{\text { c.s. }}{\leq} \int_{0}^{T}\|\mathbf{f}(t)\|_{L^{2}(U)}^{2}\left\|w_{j}\right\|_{L^{2}(U)}^{2} d t \\
& =\|\mathbf{f}\|_{L^{2}\left(0, T ; L^{2}(U)\right)}<\infty
\end{aligned}
$$

so $f^{j} \in L^{2}(0, T ; \mathbb{R})$ for all $j \in\{1,2, \ldots, m\}$.

Galerkin Approximations

Likewise, for each $e^{j k}$,

$$
\left\|e^{j k}\right\|_{L^{\infty}(0, T)}=\left\|B\left[w_{k}, w_{j} ; t\right]\right\|_{L^{\infty}(0, T)}
$$

and

$$
\begin{aligned}
& \left|B\left[w_{k}, w_{j} ; t\right]\right|=\left|\int_{U}\left\{\sum_{i, l=1}^{n} a^{i l}\left(w_{k}\right)_{x_{j}}\left(w_{j}\right)_{x_{l}}+\sum_{i=1}^{n} b^{i}\left(w_{k}\right)_{x_{i}} w_{j}+c w_{k} w_{j}\right\} d \vec{x}\right| \\
& \leq C \int_{U}\left\{\sum_{i, l=1}^{n}\left|\left(w_{k}\right)_{x_{j}}\right|\left|\left(w_{j}\right)_{x_{l}}\right|+\sum_{i=1}^{n}\left|(w _ { k }) _ { x _ { i } } \left\|w_{j}\left|+\left|w_{k} \| w_{j}\right|\right\} d \vec{x}\right.\right.\right. \\
& \leq \tilde{C}\left\|w_{k}\right\|_{H^{1}(U)}\left\|w_{j}\right\|_{H^{1}(U)}<\infty,
\end{aligned}
$$

so $e^{j k} \in L^{\infty}(0, T ; \mathbb{R})$ for all $j, k \in\{1,2, \ldots, m\}$.

Galerkin Approximations

In summary, for the ODE system

$$
\begin{aligned}
& d_{m}^{j \prime}(t)=-\sum_{k=1}^{m} e^{j k}(t) d_{m}^{k}(t)+f^{j}(t), \quad j=1,2, \ldots m \\
& d_{m}^{j}(0)=\left(g, w_{j}\right)
\end{aligned}
$$

we have $f^{j} \in L^{2}(0, T ; \mathbb{R})$ and $e^{j k} \in L^{\infty}(0, T ; \mathbb{R})$ for all
$j, k \in\{1,2, \ldots, m\}$, which is more than we need for what we want to assert. Proceeding similarly as we did first semester, we can show that as long as $f^{j}, e^{j k} \in L^{1}(0, T ; \mathbb{R})$, then there exists a unique absolutely continuous solution

$$
\mathbf{d}_{m}(t)=\left(d_{m}^{1}(t), d_{m}^{2}(t), \ldots, d_{m}^{m}(t)\right)
$$

to this system on $[0, T]$.
For details on this existence, see, e.g., Theorem 2.1 in "Spectral Theory of Ordinary Differential Operators," by Joachim Weidmann, Lecture Notes in Mathematics 1258 (1987).

Galerkin Approximations

By construction, we see that

$$
\begin{equation*}
\mathbf{u}_{m}(t)=\sum_{k=1}^{m} d_{m}^{k}(t) w_{k} \tag{G}
\end{equation*}
$$

solves the finite-dimensional weak problem,

$$
\begin{equation*}
\left\langle\mathbf{u}_{m}^{\prime}, w_{j}\right\rangle+B\left[\mathbf{u}_{m}, w_{j} ; t\right]=\left(\mathbf{f}, w_{j}\right), \quad \forall j \in\{1,2, \ldots, m\} \tag{FDW}
\end{equation*}
$$

for a.e. $t \in(0, T)$, along with

$$
\begin{equation*}
d_{m}^{k}(0)=\left(g, w_{k}\right), \quad \forall k \in\{1,2, \ldots, m\} \tag{IC}
\end{equation*}
$$

In this way, we have established the following theorem from Evans:
Theorem 7.1.1. Let Assumptions (A) hold. Then for each integer $m \in\{1,2, \ldots\}$, there exists a unique function \mathbf{u}_{m} of the form (G) solving (FDW), (IC).

Galerkin Approximations

We refer to $\mathbf{u}_{m}(t)$ constructed in this way as the Galerkin approximation of our sought solution $\mathbf{u}(t)$. Our goal will be to show that as $m \rightarrow \infty$, the sequence $\left\{\mathbf{u}_{m}\right\}_{m=1}^{\infty}$ converges to a solution of the weak formulation of (\mathcal{P}) in an appropriate sense.

