Second Order Parabolic PDE: Weak Solutions and Galerkin Approximations

MATH 612, Texas A&M University

Spring 2020

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Second Order Parabolic PDE

Let $U \subset \mathbb{R}^n$ be open and bounded, and for $\mathcal{T} > 0$ set

$$U_T := U \times (0, T].$$

We'll consider equations of the form

$$u_t + Lu = f; \quad \text{in } U_T \qquad (\mathcal{P})$$
$$u = 0; \quad \text{on } \partial U \times [0, T]$$
$$u = g; \quad \text{on } U \times \{t = 0\},$$

where L denotes a partial differential operator either in divergence form

$$Lu := -\sum_{i,j=1}^{n} (a^{ij}(\vec{x},t)u_{x_i})_{x_j} + \sum_{i=1}^{n} b^i(\vec{x},t)u_{x_i} + c(\vec{x},t)u,$$

or non-divergence form

$$Lu := -\sum_{i,j=1}^{n} a^{ij}(\vec{x},t) u_{x_i x_j} + \sum_{i=1}^{n} b^i(\vec{x},t) u_{x_i} + c(\vec{x},t) u.$$

Uniform Parabolicity

Definition. For either form of the operator L, we say that the partial differential operator $\partial_t + L$ is uniformly parabolic in U_T if there exists a constant $\theta > 0$ so that

$$\sum_{i,j=1}^n a^{ij}(ec{x},t)\xi_i\xi_j \geq heta|ec{\xi}|^2$$

for a.e. $(\vec{x}, t) \in U_T$ and all $\vec{\xi} \in \mathbb{R}^n$. I.e., if we denote $A(\vec{x}, t) = (a^{ij}(\vec{x}, t))$, then

 $\vec{\xi}^{\mathsf{T}} A(\vec{x}, t) \vec{\xi} \ge \theta |\vec{\xi}|^2,$

for a.e. $(\vec{x}, t) \in U_T$ and all $\vec{\xi} \in \mathbb{R}^n$.

Notes. 1. For the heat equation, $L = -\Delta$, so that $A(\vec{x}, t) = I$, and we have

$$\vec{\xi}^{\mathsf{T}} A(\vec{x},t) \vec{\xi} = |\vec{\xi}|^2.$$

I.e., $\theta = 1$.

Uniform Parabolicity

2. More generally, if $A(\vec{x}, t)$ is symmetric, then by the min-max principle, this condition holds if and only if the eigenvalues of $A(\vec{x}, t)$ are all bounded below by θ . Recall from last semester that a partial differential operator $\partial_t + L$ is parabolic if the matrix associated with its second order terms (including t) has 0 as one of its eigenvalues and its other eigenvalues all have the same sign. So an operator that is uniformly parabolic in U_T is certainly parabolic in U_T .

Basic Assumptions

In order to avoid repeated statements of assumptions, we'll collect our basic assumptions for this section here. These will be:

1.
$$U \subset \mathbb{R}^n$$
 is open and bounded, and $T > 0$;

2.
$$a^{ij} = a^{ji}$$
 for all $i, j \in \{1, 2, ..., n\}$;

- 3. a^{ij} , b^i , $c \in L^{\infty}(U_T)$ for all $i, j \in \{1, 2, \dots, n\}$;
- The operator L is in divergence form and uniformly parabolic in U_T;

5.
$$f \in L^2(U_T), g \in L^2(U).$$

We'll refer to this collection of assumptions as Assumptions (A).

Note. In this section, unless explicitly stated otherwise, (\cdot, \cdot) will denote $L^2(U)$ inner product, and $\langle \cdot, \cdot \rangle$ will denote the action of an element of $H^{-1}(U)$ on an element of $H^1_0(U)$.

The Time-Dependent Bilinear Form

Formally, if u is a smooth solution of

$$u_t + Lu = f,$$

with *L* in divergence form, we can multiply by a test function $\phi \in C_c^{\infty}(U)$ and proceed as in our section on elliptic operators to obtain the relation

$$(u_t,\phi)+B[u,\phi;t]=(f,\phi),$$

for each $t \in [0, T]$, where

$$B[u,\phi;t] := \int_{U} \Big\{ \sum_{i,j=1}^{n} a^{ij}(\vec{x},t) u_{x_i} \phi_{x_j} + \sum_{i=1}^{n} b^i(\vec{x},t) u_{x_i} \phi + c(\vec{x},t) u \phi \Big\} d\vec{x}.$$

ション ふゆ アメリア メリア しょうくの

We'll use this to develop our weak formulation for (\mathcal{P}) .

Notation

If $u(\cdot, t) \in H_0^1(U)$ for a.e. $t \in (0, T)$, then we'll regard u as a map $t \mapsto u(\cdot, t)$. In this section, following the convention that Evans adopts, we'll denote such maps with a bold **u**. I.e.,

$$\mathsf{u}(t)(\vec{x})=u(\vec{x},t),$$

and similarly for f(t). This allows us to express the strong form of (\mathcal{P}) as

$$\mathbf{u}' + L\mathbf{u} = \mathbf{f}$$
, for a.e. $t \in (0, T)$.

Here, we notice that since $f \in L^2(U_T)$, we have

$$\|\mathbf{f}\|_{L^{2}(0,T;L^{2}(U))}^{2} = \int_{0}^{T} \|\mathbf{f}(t)\|_{L^{2}(U)}^{2} dt = \int_{0}^{T} \int_{U} |f(\vec{x},t)|^{2} d\vec{x} dt < \infty.$$

I.e., $\mathbf{f} \in L^{2}(0,T;L^{2}(U)).$

ション ふゆ アメリア メリア しょうくの

Motivating the Weak Formulation

The associated weak form of this equation can be expressed as $(\mathbf{u}', \mathbf{v}) + B[\mathbf{u}, \mathbf{v}; t] = (\mathbf{f}, \mathbf{v}),$ for all $v \in H^1_0(U)$ and a.e. $t \in (0, T)$. We see that (u', v) = -B[u, v; t] + (f, v) $= -\int_{U}\left\{\sum_{i=1}^{n}a^{ij}\mathbf{u}_{x_{i}}\mathbf{v}_{x_{j}} + \sum_{i=1}^{n}b^{i}\mathbf{u}_{x_{i}}\mathbf{v} + c\mathbf{u}\mathbf{v}\right\} + (\mathbf{f},\mathbf{v})$ $= \int_{U} \left\{ \left(\mathbf{f} - \sum_{i=1}^{n} b^{i} \mathbf{u}_{x_{i}} - c \mathbf{u} \right) \mathbf{v} - \sum_{i=1}^{n} \left(\sum_{i=1}^{n} a^{ij} \mathbf{u}_{x_{i}} \right) \mathbf{v}_{x_{j}} \right\} d\vec{x}$ $=\int_{U}\left\{\mathbf{g}^{0}\mathbf{v}+\sum_{i=1}^{n}\mathbf{g}^{j}\mathbf{v}_{\mathbf{x}_{j}}\right\}d\vec{\mathbf{x}}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 - のへで

Motivating the Weak Formulation

I.e.,

$$(\mathbf{u}', \mathbf{v}) = \int_U \left\{ \mathbf{g}^0 \mathbf{v} + \sum_{j=1}^n \mathbf{g}^j \mathbf{v}_{\mathbf{x}_j} \right\} d\vec{\mathbf{x}},$$

where for $\mathbf{u}(t) \in H_0^1(U)$, we have

$$egin{aligned} \mathbf{g}^0(t) = \mathbf{f}(t) - \sum_{i=1}^n b^i(ec{x},t) \mathbf{u}(t)_{x_i} - c(ec{x},t) \mathbf{u}(t) \in L^2(U) \ \mathbf{g}^j(t) = -\sum_{i=1}^n a^{ij}(ec{x},t) \mathbf{u}_{x_i} \in L^2(U). \end{aligned}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Motivating the Weak Formulation

If we compare with Theorem 5.9.1, we see that this suggests that we should have $\mathbf{u}'(t) \in H^{-1}(U)$ for a.e. $t \in (0, T)$, with

$$\begin{split} \|\mathbf{u}'(t)\|_{H^{-1}(U)} &\leq \Big(\int_{U}\sum_{j=0}^{n}|\mathbf{g}^{j}(t)|^{2}d\vec{x}\Big)^{1/2} \\ &\leq C\Big(\|\mathbf{u}(t)\|_{H^{1}(U)} + \|\mathbf{f}(t)\|_{L^{2}(U)}\Big) \end{split}$$

ション ふゆ く 山 マ チャット しょうくしゃ

This motivates our weak formulation of (\mathcal{P}) .

The Parabolic Weak Formulation

Definition. We say that a function $\mathbf{u} \in L^2(0, T; H_0^1(U))$, with $\mathbf{u}' \in L^2(0, T; H^{-1}(U))$, is a weak solution of (\mathcal{P}) if

(i) $\langle \mathbf{u}', \mathbf{v} \rangle + B[\mathbf{u}, \mathbf{v}; t] = (\mathbf{f}, \mathbf{v})$ for all $\mathbf{v} \in H_0^1(U)$ and a.e. $t \in (0, T)$, and

(ii) u(0) = g.

Note. We know from Theorem 5.9.3 that under these assumptions, we have $\mathbf{u} \in C([0, T]; L^2(U))$, so the pointwise evaluation $\mathbf{u}(0) = g$ is justified.

ション ふゆ く 山 マ チャット しょうくしゃ

We'll approach existence by first constructing solutions to certain finite-dimensional approximations of the weak formulation of (\mathcal{P}), and then taking an appropriate limit. This method is named after the Russian mathematician Boris Galerkin (1871-1945).

To begin, let $\{w_k\}_{k=1}^{\infty}$ denote an orthogonal basis of $H_0^1(U)$ that is also an orthonormal basis of $L^2(U)$. For example, such a basis is constructed in the proof of Theorem 6.5.2 in Evans as eigenfunctions for the Laplacian operator $L = -\Delta$ on U.

We fix any $m \in \{1, 2, ...\}$, and look for solutions of the weak formulation of (\mathcal{P}) of the form

$$\mathbf{u}_m(t) = \sum_{k=1}^m d_m^k(t) w_k,$$

where the coefficient functions $\{d_m^k(t)\}_{k=1}^m$ are to be determined.

If we substitute this ansatz into the weak formulation of (\mathcal{P}) , we obtain the relation

$$\langle \sum_{k=1}^m d_m^{k\prime}(t) w_k, v \rangle + B[\sum_{k=1}^m d_m^k(t) w_k, v; t] = (\mathbf{f}(t), v), \quad \forall v \in H^1_0(U),$$

and using linearity

$$\sum_{k=1}^m d_m^{k\prime}(t) \langle w_k, v \rangle + \sum_{k=1}^m d_m^k(t) B[w_k, v; t] = (\mathbf{f}(t), v), \quad \forall v \in H^1_0(U).$$

Here, we have $w_k \in H^1_0(U)$ for each fixed $k \in \{1, 2, ..., m\}$, so we can replace $\langle w_k, v \rangle$ with $(w_k, v)_{L^2(U)}$.

ション ふゆ アメリア メリア しょうくの

In fact, since $\mathbf{u}_m(t)$ is a finite-dimensional approximation of the solution, we expect that this is too much to ask, but we can think of replacing the requirement that this be true for all $v \in H_0^1(U)$ with the requirement that it be true for all $v \in \operatorname{Span}\{w_j\}_{j=1}^m$. I.e., we require

$$\sum_{k=1}^{m} d_m^{k'}(t)(w_k, w_j) + \sum_{k=1}^{m} d_m^k(t) B[w_k, w_j; t] = (\mathbf{f}(t), w_j),$$

for all $j \in \{1, 2, \dots, m\}$. We set

$$e^{jk}(t) := B[w_k, w_j; t]$$
 and $f^j(t) := (\mathbf{f}(t), w_j),$

and use orthonormality of $\{w_k\}_{k=1}^n$ to obtain the first-order system of ODE

$$d_m^{j\prime}(t) = -\sum_{k=1}^m e^{jk}(t) d_m^k(t) + f^j(t), \quad j = 1, 2, \dots m.$$

For initial values, we would like to set

$$\mathsf{u}_m(0)=g\in L^2(U),$$

but again this is too much to ask. Instead, we formally determine the coefficients $\{d_m^k(0)\}_{k=1}^m$ that we would need in order to have the relation

$$g=\sum_{k=1}^{\infty}d_m^k(0)w_k.$$

Again using orthonormality of $\{w_k\}_{k=1}^\infty$, we see that

$$d_m^j(0)=(g,w_j),$$

ション ふゆ く 山 マ チャット しょうくしゃ

for each $j \in \{1, 2, ..., m\}$.

We now want to assert something about solvability for the ODE system

$$d_m^{j'}(t) = -\sum_{k=1}^m e^{jk}(t)d_m^k(t) + f^j(t), \quad j = 1, 2, \dots m$$

$$d_m^j(0) = (g, w_j),$$

and for this we need to better understand the nature of the coefficents $\{f^j(t)\}_{j=1}^m$ and $\{e^{jk}(t)\}_{j=1}^m$. First,

$$\begin{split} \|f^{j}\|_{L^{2}(0,T)}^{2} &= \int_{0}^{T} |(\mathbf{f}(t), w_{j})|^{2} dt \stackrel{c.s.}{\leq} \int_{0}^{T} \|\mathbf{f}(t)\|_{L^{2}(U)}^{2} \|w_{j}\|_{L^{2}(U)}^{2} dt \\ &= \|\mathbf{f}\|_{L^{2}(0,T;L^{2}(U))} < \infty, \\ \text{so } f^{j} \in L^{2}(0,T;\mathbb{R}) \text{ for all } j \in \{1, 2, \dots, m\}. \end{split}$$

ション ふゆ アメリア メリア しょうくしゃ

Likewise, for each e^{jk} ,

$$\|e^{jk}\|_{L^{\infty}(0,T)} = \|B[w_k, w_j; t]\|_{L^{\infty}(0,T)},$$

 and

$$\begin{split} \left| B[w_k, w_j; t] \right| &= \Big| \int_U \Big\{ \sum_{i,l=1}^n a^{il} (w_k)_{x_j} (w_j)_{x_l} + \sum_{i=1}^n b^i (w_k)_{x_i} w_j + c w_k w_j \Big\} d\vec{x} \Big| \\ &\leq C \int_U \Big\{ \sum_{i,l=1}^n |(w_k)_{x_j}| |(w_j)_{x_l}| + \sum_{i=1}^n |(w_k)_{x_i}| |w_j| + |w_k| |w_j| \Big\} d\vec{x} \\ &\leq \tilde{C} ||w_k||_{H^1(U)} ||w_j||_{H^1(U)} < \infty, \\ &\text{so } e^{jk} \in L^\infty(0, T; \mathbb{R}) \text{ for all } j, k \in \{1, 2, \dots, m\}. \end{split}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

In summary, for the ODE system

$$d_m^{j'}(t) = -\sum_{k=1}^m e^{jk}(t)d_m^k(t) + f^j(t), \quad j = 1, 2, \dots m$$

 $d_m^{j}(0) = (g, w_j),$

we have $f^j \in L^2(0, T; \mathbb{R})$ and $e^{jk} \in L^\infty(0, T; \mathbb{R})$ for all $j, k \in \{1, 2, ..., m\}$, which is more than we need for what we want to assert. Proceeding similarly as we did first semester, we can show that as long as $f^j, e^{jk} \in L^1(0, T; \mathbb{R})$, then there exists a unique absolutely continuous solution

$$\mathbf{d}_m(t) = (d_m^1(t), d_m^2(t), \dots, d_m^m(t))$$

to this system on [0, T].

For details on this existence, see, e.g., Theorem 2.1 in "Spectral Theory of Ordinary Differential Operators," by Joachim Weidmann, Lecture Notes in Mathematics **1258** (1987).

By construction, we see that

$$u_m(t) = \sum_{k=1}^m d_m^k(t) w_k, \qquad (G)$$

ション ふゆ く 山 マ チャット しょうくしゃ

solves the finite-dimensional weak problem,

$$\langle \mathbf{u}'_m, w_j \rangle + B[\mathbf{u}_m, w_j; t] = (\mathbf{f}, w_j), \quad \forall j \in \{1, 2, \dots, m\}, \quad (\mathsf{FDW})$$

for a.e. $t \in (0, T)$, along with
 $d_m^k(0) = (g, w_k), \quad \forall k \in \{1, 2, \dots, m\}.$ (IC)

In this way, we have established the following theorem from Evans:

Theorem 7.1.1. Let Assumptions (A) hold. Then for each integer $m \in \{1, 2, ...\}$, there exists a unique function \mathbf{u}_m of the form (G) solving (FDW), (IC).

We refer to $\mathbf{u}_m(t)$ constructed in this way as the Galerkin approximation of our sought solution $\mathbf{u}(t)$. Our goal will be to show that as $m \to \infty$, the sequence $\{\mathbf{u}_m\}_{m=1}^{\infty}$ converges to a solution of the weak formulation of (\mathcal{P}) in an appropriate sense.

ション ふゆ く 山 マ チャット しょうくしゃ