M641 Fall 2012, Assignment 1, due Wednesday Sept. 5

1. [10 pts] In this problem I want to collect several important differentiation formulas. First, recall that for a function $\vec{f}(\vec{x})$, with $\vec{x} \in \mathbb{R}^{n}$ and $\vec{f} \in \mathbb{R}^{m}$, we're using the notation

$$
D_{x} \vec{f}(\vec{x})=\left(\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \ldots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right) .
$$

Two important special cases are $n=1$ and $m=1$. First, for $m=1$ we obtain the gradient vector

$$
D f(\vec{x})=\left(f_{x_{1}}, f_{x_{2}}, \ldots, f_{x_{n}}\right) .
$$

(The gradient vector is often regarded as a column vector, and in certain contexts this is important, so I may not typically refer to this as the gradient vector.) For $n=1$ we obtain

$$
D \vec{f}(x)=\left(\begin{array}{c}
\frac{\partial f_{1}}{\partial x} \\
\frac{\partial f_{2}}{\partial x} \\
\vdots \\
\frac{\partial f_{m}}{\partial x}
\end{array}\right)=\frac{d \vec{f}}{d x}
$$

Theorem (Chain Rule). Suppose $\vec{y}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable at $\vec{x}_{0} \in \mathbb{R}^{n}$ and $\vec{f}: \mathbb{R}^{m} \rightarrow$ \mathbb{R}^{k} is differentiable at $\vec{y}\left(\vec{x}_{0}\right) \in \mathbb{R}^{m}$. Then $\vec{h}=\vec{f}(\vec{y}(\vec{x}))$ is differentiable at $\vec{x}=\vec{x}_{0}$ and

$$
D_{x} \vec{h}\left(\vec{x}_{0}\right)=D_{y} \vec{f}\left(\vec{y}\left(\vec{x}_{0}\right)\right) D_{x} \vec{y}\left(\overrightarrow{x_{0}}\right) .
$$

In particular, notice that this is the multiplication of a $k \times m$ matrix by a $m \times n$ matrix, resulting in a $k \times m$ matrix.
For the following problems assume all functions are as differentiable as necessary. In all cases you can apply the chain rule without proof.
(a) Show that if A is any $n \times n$ matrix and $\vec{x} \in \mathbb{R}^{n}$ is a column vector, then

$$
D_{x}(A \vec{x})=A,
$$

and likewise

$$
D_{x}\left(\vec{x}^{t r} A^{t r}\right)=A
$$

(b) Show that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $\vec{x}: \mathbb{R} \rightarrow \mathbb{R}^{n}$ then

$$
\frac{d}{d t} f(\vec{x}(t))=D_{x} f \cdot \frac{d \vec{x}}{d t} .
$$

(c) Show that if $\vec{x} \in \mathbb{R}^{n}$ and $f:[0, \infty) \rightarrow \mathbb{R}$ then

$$
D_{x} f(|\vec{x}|)=f^{\prime}(|\vec{x}|) \frac{\vec{x}}{|\vec{x}|},
$$

and in particular

$$
D_{x}\left(|\vec{x}|^{r}\right)=r|\vec{x}|^{r-2} \vec{x} .
$$

(d) Show that if $\vec{x} \in \mathbb{R}^{n}$ and $f:[0, \infty) \rightarrow \mathbb{R}$ then

$$
\Delta f(|\vec{x}|)=f^{\prime \prime}(|\vec{x}|)+\frac{n-1}{|\vec{x}|} f^{\prime}(|\vec{x}|) .
$$

Here, $\Delta:=\sum_{k=1}^{n} \frac{\partial^{2}}{\partial x_{k}^{2}}$.
(e) Show that if $u, v: \mathbb{R}^{n} \rightarrow \mathbb{R}$ then

$$
\Delta(u v)=v \Delta u+2 D u \cdot D v+u \Delta v .
$$

(f) Show that if $\vec{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $\vec{g}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are regarded as row vectors then

$$
D_{x}(\vec{f}(\vec{x}) \cdot \vec{g}(\vec{x}))=\vec{g}(\vec{x}) D_{x} \vec{f}(\vec{x})+\vec{f}(\vec{x}) D_{x} \vec{g}(\vec{x}) .
$$

(g) Show that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ then

$$
D_{x}(f(\vec{x}) \vec{g}(\vec{x}))=\vec{g}(\vec{x}) \otimes D_{x} f(\vec{x})+f(\vec{x}) D_{x} \vec{g}(\vec{x}),
$$

where \otimes denotes the $m \times n$ tensor product matrix

$$
\vec{g}(\vec{x}) \otimes D_{x} f(\vec{x})=\left(\begin{array}{c}
g_{1} \\
g_{2} \\
\vdots \\
g_{m}
\end{array}\right)\left(f_{x_{1}}, f_{x_{2}}, \ldots, f_{x_{n}}\right)
$$

2. $[10 \mathrm{pts}]$
a. Show that for any positive integers $j \leq k$

$$
\binom{k}{j-1}+\binom{k}{j}=\binom{k+1}{j} .
$$

b. Prove the Binomial Theorem

$$
(a+b)^{k}=\sum_{j=0}^{k}\binom{k}{j} a^{j} b^{k-j}
$$

for $k=1,2, \ldots$.
3. [10 pts] Prove the Multinomial Theorem

$$
\left(x_{1}+x_{2}+\cdots+x_{n}\right)^{k}=\sum_{|\alpha|=k}\binom{|\alpha|}{\alpha} \vec{x}^{\alpha} .
$$

4. [10 pts] Suppose $f \in C^{k+1}\left(B^{o}(0, r)\right)$ for some $r>0$ and prove that for any $\vec{x} \in B^{o}(0, r) \subset$ \mathbb{R}^{n}

$$
f(\vec{x})=\sum_{|\alpha| \leq k} \frac{D^{\alpha} f(0)}{\alpha!} \vec{x}^{\alpha}+\sum_{|\alpha|=k+1} \frac{D^{\alpha} f(\vec{\xi})}{\alpha!} \vec{x}^{\alpha}
$$

where $\vec{\xi}$ lies on a line between 0 and \vec{x}.
5. [10 pts] Solve the optimization problem

$$
\begin{aligned}
\max f(\vec{x}) & =x_{1} x_{2} x_{3} \\
\text { s.t. } g(\vec{x}) & =2\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}\right)-A=0 .
\end{aligned}
$$

