M641 Fall 2012, Assignment 11, due Wed. Nov. 28

1. [10 pts] (August 2010, Applied Analysis qual Problem 2.) Let

$$
\langle f, g\rangle:=\int_{-1}^{1} f(x) \overline{g(x)} w(x) d x
$$

where $w \in C([-1,1]), w(x)>0$ and $w(-x)=w(x)$ for all $x \in[-1,1]$. Let $\left\{\phi_{n}(x)\right\}_{n=1}^{\infty}$ be the orthogonal polynomials generated by using the Gram-Schmidt process on $\left\{1, x, x^{2}, \ldots\right\}$. Assume that $\phi_{n}(x)=x^{n}+$ lower powers.
a. Show that $\phi_{n}(-x)=(-1)^{n} \phi_{n}(x)$.
b. Show that ϕ_{n} is orthogonal to all polynomials of degree $\leq n-1$.
c. Show that $\phi_{n}(x)$ satisfies the recurrence relation

$$
\phi_{n+1}(x)=x \phi_{n}(x)-c_{n} \phi_{n-1}(x), \quad n \geq 1
$$

where

$$
c_{n}=\frac{\left\langle\phi_{n}, x^{n}\right\rangle}{\left\|\phi_{n-1}\right\|^{2}}
$$

2. [10 pts] (Keener Problem 3.2.2.) For what values of λ do the following integral equations have solutions?
a.

$$
u(x)=f(x)+\lambda \int_{0}^{1 / 2} u(y) d y
$$

b.

$$
u(x)=f(x)+\lambda \int_{0}^{1} x y u(y) d y
$$

c.

$$
u(x)=f(x)+\lambda \int_{0}^{2 \pi} \sum_{j=1}^{n} \frac{1}{j} \cos (j y) \cos (j x) u(y) d y
$$

d.

$$
u(x)=f(x)+\lambda \int_{-1}^{1} \sum_{j=0}^{n} P_{j}(x) P_{j}(y) u(y) d y
$$

where $P_{j}(x)$ is the $j^{\text {th }}$ Legendre polynomial.
3. [10 pts] Let X, Y, and Z denote Banach spaces.
a. Show that the sum of two compact operators $A: X \rightarrow Y$ and $B: X \rightarrow Y$ is compact.
b. Show that if $A: X \rightarrow Y$ and $B: Y \rightarrow Z$ then:
(i) If A is bounded and B is compact then $B A$ is compact.
(ii) If A is compact and B is bounded then $B A$ is compact.
4. [10 pts] (Jan. 2011 Applied Analysis qual Problem 4.) Let $k(x, y)=x^{4} y^{12}$ and consider the operator

$$
K u:=\int_{0}^{1} k(x, y) u(y) d y
$$

a. Show that K is a Hilbert-Schmidt operator and that $\|K\| \leq \frac{1}{10}$.
b. State the Fredholm Alternative for the operator $L=I-\lambda K$. Explain why it applies in this case. Find all values λ such that $L u=f$ has a unique solution for all $f \in L^{2}([0,1])$.
c. Use a Neumann series to find the resolvent $(I-\lambda K)^{-1}$ for λ small. Sum the series to find the resolvent.
$5[10 \mathrm{pts}]$. (Keener Problem 3.3.1.) Find the solutions of

$$
u(x)-\lambda \int_{0}^{2 \pi} \sum_{j=1}^{n} \frac{1}{j} \cos (j y) \cos (j x) u(y) d y=\sin ^{2} x, \quad n \geq 2,
$$

for all values of λ. Find the resolvent kernel for this equation. (Find the least squares solution if necessary.)

