M641 Fall 2012 Assignment 2, due Wed. Sept. 12

1 [10 pts]. Let $B^{o}(0,r)$ denote the open ball of radius r in \mathbb{R}^{n} , and take as definitions

$$|B^{o}(0,r)| := \int_{B^{o}(0,r)} 1d\vec{x}$$
$$|\partial B^{o}(0,r)| := \int_{\partial B^{o}(0,r)} 1dS.$$

a. Show that

$$|B^{o}(0,r)| = |B^{o}(0,1)|r^{n},$$

and likewise

$$|\partial B^o(0,r)| = |\partial B^o(0,1)|r^{n-1}|$$

b. Show that

$$|\partial B^o(0,r)| = \frac{n}{r} |B^o(0,r)|.$$

c. Show that

$$|\partial B^o(0,1)| = \frac{2\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2})},$$

where Γ denotes the gamma function

$$\Gamma(k) = \int_0^\infty t^{k-1} e^{-t} dt.$$

(Hint. Use the integral equality $\int_{\mathbb{R}^n} e^{-|\vec{x}|^2} d\vec{x} = \pi^{n/2}$, and evaluate the integral in polar coordinates.)

d. Show that

$$\frac{2\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2})} = \frac{n\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2}+1)}$$

so that we find the volumes:

$$|\partial B^o(0,1)| = n\alpha(n),$$

where

$$\alpha(n) = \frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2}+1)}.$$

Note that $|B^o(0,1)| = \alpha(n)$ and this could just as well have been stated for the closed ball B(0,r).

2 [10 pts]. (Keener Problem 1.2.1.)

a. Represent the transformation whose matrix representation with respect to the natural basis is

$$A = \left(\begin{array}{rrrr} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 1 & 0 & 1 \end{array}\right)$$

relative to the basis $\{(1,1,0)^T, (0,1,1)^T, (1,0,1)^T\}$.

b. The representation of a transformation with respect to the basis

{
$$(1, 1, 2)^T, (1, 2, 3)^T, (3, 4, 1)^T$$
}

is

$$A = \left(\begin{array}{rrrr} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 1 & 0 & 1 \end{array}\right)$$

Find the representation of this transformation with respect to the basis

$$\{(1,0,0)^T, (0,1,-1)^T, (0,1,1)^T\}$$

3. [10 pts] (Introduction to generalized eigenvectors) Recall that if λ is an eigenvalue of $A \in \mathbb{R}^{n \times n}$, then its algebraic multiplicity is the number of times it repeats as a solution of the characteristic equation det $(A - \lambda I) = 0$ and its geometric multiplicity is the number of linearly independent eigenvectors it has. If the algebraic and geometric multiplicities associated with each eigenvalue for a matrix are equal, then the eigenvectors for the matrix form a full basis of \mathbb{R}^n and the matrix can be diagonalized by $P = (\vec{v}_1 \ \vec{v}_2 \ \dots \ \vec{v}_n)$. If there are eigenvalues of geometric multiplicity differing from their algebraic multiplicity, then we need to consider generalized eigenvectors.

Definition. Suppose that for some value λ and some integer $p \ge 1$ there exists a vector \vec{v} so that

$$(A - \lambda I)^p \vec{v} = 0$$
 but $(A - \lambda I)^{p-1} \vec{v} \neq 0.$

Then \vec{v} is said to be a generalized eigenvector for λ of index p.

Find the eigenvalues, eigenvectors and generalized eigenvectors for the matrix

$$A = \left(\begin{array}{rrrr} 3 & -1 & 1 \\ 2 & 0 & 1 \\ 1 & -1 & 2 \end{array}\right).$$

4. [10 pts] (**Representation by Direct Sum**) For a matrix $A \in \mathbb{R}^{n \times n}$, let $\lambda_1, \lambda_2, \ldots, \lambda_k$ denote the distinct eigenvalues of A with respective algebraic multiplicities n_1, n_2, \ldots, n_k , where $k \leq n$ and according to the Fundamental Theorem of Algebra

$$n_1 + n_2 + \dots + n_k = n.$$

Let X_j denote the subspace spanned by the generalized eigenvectors for λ_j . (Note that a regular eigenvector is also a generalized eigenvector, and so should be included in this set.) **Theorem.** For any matrix $A \in \mathbb{R}^{n \times n}$, and for $j \in \{1, 2, ..., k\}$, the subspace X_j is invariant under A, has dimension n_j , and satisfies

$$(A - \lambda_j I)^{n_j} \vec{v} = 0 \quad \forall \vec{v} \in X_j.$$

Moreover, the space \mathbb{R}^n is a direct sum of the spaces X_1, X_2, \ldots, X_k .

Definition. To say X_j is invariant under A means $\vec{x} \in X_j \Rightarrow A\vec{x} \in X_j$.

Definition. When we say that \mathbb{R}^n is a direct sum of X_1, X_2, \ldots, X_k , we mean that for any $\vec{x} \in \mathbb{R}^n$ there exists a unique collection $\vec{x}_1 \in X_1, \vec{x}_2 \in X_2, \ldots, \vec{x}_k \in X_k$ so that

$$\vec{x} = \vec{x}_1 + \vec{x}_2 + \dots + \vec{x}_k$$

For the matrix

$$A = \begin{pmatrix} 3 & -1 & 1 \\ 2 & 0 & 1 \\ 1 & -1 & 2 \end{pmatrix},$$

from the previous problem, with eigenvalues $\lambda_1 = 1$ and $\lambda_2 = 2$ and associated eigenspaces X_1 and X_2 , find the unique vectors $\vec{x}_1 \in X_1$ and $\vec{x}_2 \in X_2$ so that

$$\begin{pmatrix} 1\\0\\1 \end{pmatrix} = \vec{x}_1 + \vec{x}_2.$$

5. [10 pts] (Jordan Canonical Form) Although some matrices cannot be diagonalized, all matrices can be put into Jordan Canonical form. If a matrix $A \in \mathbb{C}^{n \times n}$ has k distinct eigenvalues $\{\lambda_i\}_{i=1}^k$ with respective multiplicies $\{n_i\}_{i=1}^k$, then the Jordan canonical form of A is

$$J = \left(\begin{array}{ccc} J_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & J_k \end{array} \right)$$

where each submatrix J_i has the form

$$J_i = \begin{pmatrix} \lambda_i & 1 & 0 & 0 \\ 0 & \lambda_i & 1 & 0 \\ 0 & 0 & \ddots & 1 \\ 0 & 0 & 0 & \lambda_i \end{pmatrix}$$

We construct our matrix P as follows: let its first n_1 columns comprise the generalized eigenvectors associated with λ_1 , its next n_2 columns the generalized eigenvectors associated with λ_2 etc. Then the Jordan form of A is easily computed as

$$J = P^{-1}AP.$$

Verify that this last expression gives the Jordan form for the matrix A from Problem 2, and use this to solve the matrix equation

$$A\vec{x} = \begin{pmatrix} 3\\2\\3 \end{pmatrix}.$$