M641 Fall 2012 Assignment 2, due Wed. Sept. 12

1 [10 pts]. Let $B^{o}(0, r)$ denote the open ball of radius r in \mathbb{R}^{n}, and take as definitions

$$
\begin{aligned}
\left|B^{o}(0, r)\right| & :=\int_{B^{o}(0, r)} 1 d \vec{x} \\
\left|\partial B^{o}(0, r)\right| & :=\int_{\partial B^{\circ}(0, r)} 1 d S .
\end{aligned}
$$

a. Show that

$$
\left|B^{o}(0, r)\right|=\left|B^{o}(0,1)\right| r^{n},
$$

and likewise

$$
\left|\partial B^{o}(0, r)\right|=\left|\partial B^{o}(0,1)\right| r^{n-1}
$$

b. Show that

$$
\left|\partial B^{o}(0, r)\right|=\frac{n}{r}\left|B^{o}(0, r)\right| .
$$

c. Show that

$$
\left|\partial B^{o}(0,1)\right|=\frac{2 \pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}\right)},
$$

where Γ denotes the gamma function

$$
\Gamma(k)=\int_{0}^{\infty} t^{k-1} e^{-t} d t
$$

(Hint. Use the integral equality $\int_{\mathbb{R}^{n}} e^{-|\vec{x}|^{2}} d \vec{x}=\pi^{n / 2}$, and evaluate the integral in polar coordinates.)
d. Show that

$$
\frac{2 \pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}\right)}=\frac{n \pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}+1\right)}
$$

so that we find the volumes:

$$
\left|\partial B^{o}(0,1)\right|=n \alpha(n)
$$

where

$$
\alpha(n)=\frac{\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}+1\right)}
$$

Note that $\left|B^{o}(0,1)\right|=\alpha(n)$ and this could just as well have been stated for the closed ball $B(0, r)$.
2 [10 pts]. (Keener Problem 1.2.1.)
a. Represent the transformation whose matrix representation with respect to the natural basis is

$$
A=\left(\begin{array}{lll}
1 & 1 & 2 \\
2 & 1 & 3 \\
1 & 0 & 1
\end{array}\right)
$$

relative to the basis $\left\{(1,1,0)^{T},(0,1,1)^{T},(1,0,1)^{T}\right\}$.
b. The representation of a transformation with respect to the basis

$$
\left\{(1,1,2)^{T},(1,2,3)^{T},(3,4,1)^{T}\right\}
$$

is

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 1 & 3 \\
1 & 0 & 1
\end{array}\right)
$$

Find the representation of this transformation with respect to the basis

$$
\left\{(1,0,0)^{T},(0,1,-1)^{T},(0,1,1)^{T}\right\}
$$

3. [10 pts] (Introduction to generalized eigenvectors) Recall that if λ is an eigenvalue of $A \in \mathbb{R}^{n \times n}$, then its algebraic multiplicity is the number of times it repeats as a solution of the characteristic equation $\operatorname{det}(A-\lambda I)=0$ and its geometric multiplicity is the number of linearly independent eigenvectors it has. If the algebraic and geometric multiplicities associated with each eigenvalue for a matrix are equal, then the eigenvectors for the matrix form a full basis of \mathbb{R}^{n} and the matrix can be diagonalized by $P=\left(\begin{array}{llll}\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{n}\end{array}\right)$. If there are eigenvalues of geometric multiplicity differing from their algebraic multiplicity, then we need to consider generalized eigenvectors.
Definition. Suppose that for some value λ and some integer $p \geq 1$ there exists a vector \vec{v} so that

$$
(A-\lambda I)^{p} \vec{v}=0 \quad \text { but } \quad(A-\lambda I)^{p-1} \vec{v} \neq 0
$$

Then \vec{v} is said to be a generalized eigenvector for λ of index p.
Find the eigenvalues, eigenvectors and generalized eigenvectors for the matrix

$$
A=\left(\begin{array}{ccc}
3 & -1 & 1 \\
2 & 0 & 1 \\
1 & -1 & 2
\end{array}\right)
$$

4. [10 pts] (Representation by Direct Sum) For a matrix $A \in \mathbb{R}^{n \times n}$, let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ denote the distinct eigenvalues of A with respective algebraic multiplicities $n_{1}, n_{2}, \ldots, n_{k}$, where $k \leq n$ and according to the Fundamental Theorem of Algebra

$$
n_{1}+n_{2}+\cdots+n_{k}=n
$$

Let X_{j} denote the subspace spanned by the generalized eigenvectors for λ_{j}. (Note that a regular eigenvector is also a generalized eigenvector, and so should be included in this set.) Theorem. For any matrix $A \in \mathbb{R}^{n \times n}$, and for $j \in\{1,2, \ldots, k\}$, the subspace X_{j} is invariant under A, has dimension n_{j}, and satisfies

$$
\left(A-\lambda_{j} I\right)^{n_{j}} \vec{v}=0 \quad \forall \vec{v} \in X_{j} .
$$

Moreover, the space \mathbb{R}^{n} is a direct sum of the spaces $X_{1}, X_{2}, \ldots, X_{k}$.

Definition. To say X_{j} is invariant under A means $\vec{x} \in X_{j} \Rightarrow A \vec{x} \in X_{j}$.
Definition. When we say that \mathbb{R}^{n} is a direct sum of $X_{1}, X_{2}, \ldots, X_{k}$, we mean that for any $\vec{x} \in \mathbb{R}^{n}$ there exists a unique collection $\vec{x}_{1} \in X_{1}, \vec{x}_{2} \in X_{2}, \ldots, \vec{x}_{k} \in X_{k}$ so that

$$
\vec{x}=\vec{x}_{1}+\vec{x}_{2}+\cdots+\vec{x}_{k}
$$

For the matrix

$$
A=\left(\begin{array}{ccc}
3 & -1 & 1 \\
2 & 0 & 1 \\
1 & -1 & 2
\end{array}\right)
$$

from the previous problem, with eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=2$ and associated eigenspaces X_{1} and X_{2}, find the unique vectors $\vec{x}_{1} \in X_{1}$ and $\vec{x}_{2} \in X_{2}$ so that

$$
\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)=\vec{x}_{1}+\vec{x}_{2}
$$

5. [10 pts] (Jordan Canonical Form) Although some matrices cannot be diagonalized, all matrices can be put into Jordan Canonical form. If a matrix $A \in \mathbb{C}^{n \times n}$ has k distinct eigenvalues $\left\{\lambda_{i}\right\}_{i=1}^{k}$ with respective multiplicies $\left\{n_{i}\right\}_{i=1}^{k}$, then the Jordan canonical form of A is

$$
J=\left(\begin{array}{ccc}
J_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & J_{k}
\end{array}\right)
$$

where each submatrix J_{i} has the form

$$
J_{i}=\left(\begin{array}{cccc}
\lambda_{i} & 1 & 0 & 0 \\
0 & \lambda_{i} & 1 & 0 \\
0 & 0 & \ddots & 1 \\
0 & 0 & 0 & \lambda_{i}
\end{array}\right)
$$

We construct our matrix P as follows: let its first n_{1} columns comprise the generalized eigenvectors associated with λ_{1}, its next n_{2} columns the generalized eigenvectors associated with λ_{2} etc. Then the Jordan form of A is easily computed as

$$
J=P^{-1} A P
$$

Verify that this last expression gives the Jordan form for the matrix A from Problem 2, and use this to solve the matrix equation

$$
A \vec{x}=\left(\begin{array}{l}
3 \\
2 \\
3
\end{array}\right) .
$$

