M641 Fall 2012, Assignment 3, due Wed. Sept. 19

1 [10 pts]. Prove that if x, y, z are in an inner product space S and $\alpha \in \mathbb{C}$ then: (i)

$$\langle x, y+z \rangle = \langle x, y \rangle + \langle x, z \rangle$$

$$\langle \sum_{i=1}^{n} x_i, y \rangle = \sum_{i=1}^{n} \langle x_i, y \rangle$$

(iii)

 $\langle x+y, x+y \rangle = \langle x, x \rangle + 2 \operatorname{Re} \langle x, y \rangle + \langle y, y \rangle$

x = 0 if and only if $\langle x, y \rangle = 0 \, \forall y \in \mathcal{S}$

 $\langle x, \alpha y \rangle = \bar{\alpha} \langle x, y \rangle$

(vi)

$$x = y$$
 if and only if $\langle x, z \rangle = \langle y, z \rangle \, \forall z \in \mathcal{S}$

Note. Keep in mind here that the idea is to proceed directly from the properties defining an inner product.

2 [10 pts]. Show that for $A \in \mathbb{C}^{m \times n}$ the induced matrix norm

$$||A|| := \max_{|\vec{x}|=1} |A\vec{x}|$$

defines a proper norm, and also that with this norm if A and B are square matrices $||AB|| \le ||A|| ||B||$.

3 [10 pts]. (Keener Problem 1.1.1.) Prove that every basis in a finite dimensional space has the same number of elements.

4 [10 pts]. (Keener Problem 1.1.3.)

a. Verify that in an inner product space

Re
$$\langle x, y \rangle = \frac{1}{4} \Big(\|x + y\|^2 - \|x - y\|^2 \Big).$$

b. Show that in any real inner product space there is at most one inner product which generates the same induced norm.

c. In \mathbb{R}^n , with n > 1, show that

$$||x||_p := \left(\sum_{k=1}^n |x_k|^p\right)^{1/p}$$

can be induced by an inner product if and only if p = 2.

5 [10 pts]. (Keener Problem 1.1.8.) Verify that the choice $\gamma = \frac{\langle x, y \rangle}{\|y\|^2}$ minimizes $\|x - \gamma y\|^2$. Show that $|\langle x, y \rangle|^2 = \|x\|^2 \|y\|^2$ if and only if x and y are linearly dependent.