M641, Fall 2012, Assignment 4, due Wed. Sept. 26

1 [10 pts]. (Keener Problem 1.2.2.)
a. Prove that two symmetric matrices are equivalent if and only if they have the same eigenvalues with the same multiplicities.
b. Show that if A and B are equivalent then $\operatorname{det} A=\operatorname{det} B$.
c. Is the converse of (b) true?
$2[10 \mathrm{pts}]$. Prove that if the eigenvalues of a self-adjoint matrix are all positive the matrix must be positive definite.
Note. We say a self-adjoint matrix is positive definite if $\langle A \vec{z}, \vec{z}\rangle>0$ for all $\vec{z} \in \mathbb{C}^{n}, \vec{z} \neq 0$.
3 [10 pts]. (Keener Problem 1.2.3.)
a. Show that if A is an $n \times m$ matrix and B is an $m \times n$ matrix, then $A B$ and $B A$ have the same nonzero eigenvalues.
b. Show that for any $n \times m$ matrix A the eigenvalues of $A A^{*}$ are real and non-negative.

4 [10 pts]. Use the Maximum Principle (Keener's Theorem 1.6) to state and prove an analogous Minimum Principle.
5 [10 pts]. (Keener Problem 1.3.1.) Use the minimax principle to show that the matrix

$$
A=\left(\begin{array}{cccc}
2 & 4 & 5 & 1 \\
4 & 2 & 1 & 3 \\
5 & 1 & 60 & 12 \\
1 & 3 & 12 & 48
\end{array}\right)
$$

has an eigenvalue $\lambda_{4}<-2.1$ and an eigenvalue $\lambda_{1}>67.4$.

