M641 Fall 2012 Assignment 5, due Wednesday Oct. 3

1 [10 pts]. (Keener Problem 1.3.2.)

a. Prove an inequality relating the eigenvalues of a symmetric matrix before and after one of its diagonal elements is increased.
b. Use this inequality and the minimax principle to show that the smallest eigenvalue of

$$
A=\left(\begin{array}{ccc}
8 & 4 & 4 \\
4 & 8 & -4 \\
4 & -4 & 3
\end{array}\right)
$$

is smaller than $-1 / 3$.
Note. Keener means a real symmetric matrix. For Part b, he means for you to proceed similarly as with his example starting on p. 21.
$2[10 \mathrm{pts}]$. (Keener Problem 1.3.3.) Use the minimax principle to show that the intermediate eigenvalue λ_{2} of

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 2 & 4 \\
3 & 4 & 3
\end{array}\right)
$$

is not positive.
3 [10 pts]. Solve the following.
A. (Keener Problem 1.2.5.) Find a basis for the range and null space of the following matrices:
a.

$$
A=\left(\begin{array}{ll}
1 & 2 \\
1 & 3 \\
2 & 5
\end{array}\right)
$$

b.

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2 \\
1 & 1 & 1
\end{array}\right)
$$

B. (Keener Problem 1.4.1.) Under what conditions do the matrices of (Keener's) Problem 1.2.5 have solutions $A \vec{x}=\vec{b}$? Are they unique?

4 [10 pts]. (Keener Problem 1.4.3.) Show that the matrix $A=\left(a_{i j}\right)$ where $a_{i j}=\left\langle\phi_{i}, \phi_{j}\right\rangle$ is invertible if and only if the vectors ϕ_{i} are linearly independent.
5 [10 pts]. (Keener Problem 1.4.4.) A square matrix A (with real entries) is positivedefinite if $\langle A \vec{x}, \vec{x}\rangle>0$ for all $\vec{x} \neq 0$. Use the Fredholm Alternative to prove that a positive definite matrix is invertible.
Note. Be clear about the role of the Fredholm Alternative.

