M641 Assignment 6, due Wed. Oct. 10

1 [10 pts]. Show that for any matrix $A \in \mathbb{C}^{m \times n}$ the least squares solution obtained by solving the normal equation

$$A^*A\vec{x} = A^*\vec{b}$$

subject to the condition $\langle \vec{x}, \vec{v} \rangle = 0$ for all $\vec{v} \in \mathcal{N}(A)$ is unique.

2 [10 pts]. Solve the following:

a. Suppose $x_n \to x$ as $n \to \infty$ in some inner product space X, and suppose $||y|| \leq C$, where $||\cdot||$ is the induced norm. Show that

$$\lim_{n \to \infty} \langle x_n, y \rangle = \langle x, y \rangle.$$

b. Let X denote a Banach space and suppose $\{x_n\}_{n=1}^{\infty} \subset X$. Show that if $\sum_{n=1}^{\infty} x_n$ is absolutely convergent (i.e., $\sum_{n=1}^{\infty} ||x_n||$ converges) then $\sum_{n=1}^{\infty} x_n$ is convergent. 3 [10 pts]. Solve the following:

a. (Keener Problem 2.1.1.) Verify that ℓ^2 is a normed vector space. Show that for all sequences $x, y \in \ell^2$ the inner product

$$\langle x, y \rangle = \sum_{i=1}^{\infty} x_i \bar{y}_i$$

is defined and satisfies the requisite properties.

b. (Keener Problem 2.1.3.) Show that the sequence $\{x_n\}_{n=1}^{\infty}$, $x_n = \sum_{k=1}^{n} \frac{1}{k!}$ is a Cauchy sequence using the measure of distance d(x, y) = |x - y|.

4 [10 pts]. In this problem, we'll consider *metric spaces*. Intuitively, we can think of a metric as a measure of distance between two objects in a set.

Definition. Let X be a set. A metric on X is a map $\rho : X \times X \to [0, \infty)$ with the following properties:

(i) $\rho(x, y) = 0$ if and only if x = y.

(ii)
$$\rho(x, y) = \rho(y, x)$$
 for all $x, y \in X$.

- (iii) $\rho(x, z) \le \rho(x, y) + \rho(y, z)$ for all $x, y, z \in X$.
- A metric space is a set X with a metric ρ , typically denoted (X, ρ) .

a. Show that $\rho(x, y) = |e^x - e^y|$ is a metric on \mathbb{R} .

- b. Show that any normed linear space is a metric space.
- c. Show that the converse of (b) is false.
- 5 [10 pts]. Define a map on square matrices by setting

$$\rho(A, B) := \operatorname{rank} (A - B),$$

for any square matrices $A, B \in \mathbb{C}^{n \times n}$. Show that ρ defines a metric.