M641 Assignment 6, due Wed. Oct. 10

1 [10 pts]. Show that for any matrix $A \in \mathbb{C}^{m \times n}$ the least squares solution obtained by solving the normal equation

$$
A^{*} A \vec{x}=A^{*} \vec{b}
$$

subject to the condition $\langle\vec{x}, \vec{v}\rangle=0$ for all $\vec{v} \in \mathcal{N}(A)$ is unique.
2 [10 pts]. Solve the following:
a. Suppose $x_{n} \rightarrow x$ as $n \rightarrow \infty$ in some inner product space X, and suppose $\|y\| \leq C$, where $\|\cdot\|$ is the induced norm. Show that

$$
\lim _{n \rightarrow \infty}\left\langle x_{n}, y\right\rangle=\langle x, y\rangle
$$

b. Let X denote a Banach space and suppose $\left\{x_{n}\right\}_{n=1}^{\infty} \subset X$. Show that if $\sum_{n=1}^{\infty} x_{n}$ is absolutely convergent (i.e., $\sum_{n=1}^{\infty}\left\|x_{n}\right\|$ converges) then $\sum_{n=1}^{\infty} x_{n}$ is convergent.
3 [10 pts]. Solve the following:
a. (Keener Problem 2.1.1.) Verify that ℓ^{2} is a normed vector space. Show that for all sequences $x, y \in \ell^{2}$ the inner product

$$
\langle x, y\rangle=\sum_{i=1}^{\infty} x_{i} \bar{y}_{i}
$$

is defined and satisfies the requisite properties.
b. (Keener Problem 2.1.3.) Show that the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}, x_{n}=\sum_{k=1}^{n} \frac{1}{k!}$ is a Cauchy sequence using the measure of distance $d(x, y)=|x-y|$.
4 [10 pts]. In this problem, we'll consider metric spaces. Intuitively, we can think of a metric as a measure of distance between two objects in a set.
Definition. Let X be a set. A metric on X is a map $\rho: X \times X \rightarrow[0, \infty)$ with the following properties:
(i) $\rho(x, y)=0$ if and only if $x=y$.
(ii) $\rho(x, y)=\rho(y, x)$ for all $x, y \in X$.
(iii) $\rho(x, z) \leq \rho(x, y)+\rho(y, z)$ for all $x, y, z \in X$.

A metric space is a set X with a metric ρ, typically denoted (X, ρ).
a. Show that $\rho(x, y)=\left|e^{x}-e^{y}\right|$ is a metric on \mathbb{R}.
b. Show that any normed linear space is a metric space.
c. Show that the converse of (b) is false.

5 [10 pts]. Define a map on square matrices by setting

$$
\rho(A, B):=\operatorname{rank}(A-B),
$$

for any square matrices $A, B \in \mathbb{C}^{n \times n}$. Show that ρ defines a metric.

