M641 Fall 2012 Assignment 7, due Wed. Oct. 17

1 [10 pts]. (Keener Problem 2.1.10.) Show that the Lebesgue dominated convergence theorem fails to apply for the sequence of functions $f_{n}(x)=n^{2} x e^{-n x}$ for $x \in[0,1]$. 2 [10 pts]. We define the convolution of two functions $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
f * g(\vec{x}):=\int_{\mathbb{R}^{n}} f(\vec{x}-\vec{y}) g(\vec{y}) d \vec{y} .
$$

Establish the following properties of convolution:

$$
\begin{equation*}
f * g=g * f \tag{i}
\end{equation*}
$$

(ii)

$$
f, g \in L^{2}\left(\mathbb{R}^{n}\right) \Rightarrow\|f * g\|_{L^{\infty}} \leq\|f\|_{L^{2}}\|g\|_{L^{2}}
$$

(iii)

$$
f, g \in L^{1}\left(\mathbb{R}^{n}\right) \Rightarrow\|f * g\|_{L^{1}} \leq\|f\|_{L^{1}}\|g\|_{L^{1}}
$$

$$
\begin{equation*}
f, g \in L^{1}\left(\mathbb{R}^{n}\right) \cap L^{2}\left(\mathbb{R}^{n}\right) \Rightarrow f * g \in L^{1}\left(\mathbb{R}^{n}\right) \cap L^{\infty}\left(\mathbb{R}^{n}\right) \cap C\left(\mathbb{R}^{n}\right) \tag{iv}
\end{equation*}
$$

3 [10 pts]. Prove the following theorem: Suppose $U \subset \mathbb{R}^{n}$ is open and bounded. Then for $1 \leq q \leq p$ we have

$$
\|u\|_{L^{q}(U)} \leq C_{p, q}\|u\|_{L^{p}(U)},
$$

for some constant $C_{p, q}$ that you should identify in your proof.
4 [10 pts]. Show that if $f \in L^{1}\left(\mathbb{R}^{n}\right)$ then given any $\epsilon>0$ there exists $\delta>0$ so that

$$
|E|<\delta \Rightarrow \int_{E}|f| d \vec{x}<\epsilon
$$

5 [10 pts]. Suppose $k \in\{0,1,2, \ldots\}$ and $0<\gamma \leq 1$. Prove that $C^{k, \gamma}(\bar{U})$ is a Banach space. Note. You can assume that for each $k \in\{0,1,2, \ldots\} C^{k}(\bar{U})$ is a Banach space. This can be proved similarly as for the case $C([a, b])$, which Keener carries out on p. 61.

