M641 Assignment 9, due Wed. Nov. 7

1. $[10 \mathrm{pts}]$ Approximate the function

$$
f(x)=\frac{1}{1+x^{2}} ; \quad x \in[-5,5]
$$

with a second order Bernstein approximation

$$
p_{n}(x)=\sum_{j=0}^{n} f\left(\frac{j}{n}\right) \beta_{n j}(x)
$$

($n=2$).
2. [10 pts] Show that if $f \in C([-1,1])$ is even then it can be approximated in the supremum norm with arbitrary accuracy by an even polynomial.
3. [10 pts] (Keener Problem 2.2.8a-b) Define the Chebyshev polynomial $T_{n}(x)=\cos \left(n \cos ^{-1} x\right)$, $n \geq 1, T_{0}=1$. Show that:
a. $T_{n}(x)$ is an nth order polynomial.
b. $\int_{-1}^{1} T_{n}(x) T_{k}(x)\left(1-x^{2}\right)^{-1 / 2} d x=0$ if $k \neq n$

Also. Compute the values obtained in (b) for $k=n, n=0,1,2, \ldots$.
4. [10 pts] (Keener Problem 2.2.9) Suppose $\left\{\phi_{n}(x)\right\}_{n=0}^{\infty}$ is a set of orthonormal polynomials relative to the L^{2} inner product with positive weight function $\omega(x)$ on the domain $[a, b]$, and suppose $\phi_{n}(x)$ is a polynomial of degree n with leading coefficient $k_{n}, \phi_{n}(x)=k_{n} x^{n}+\ldots$.
a. Show that $\phi_{n}(x)$ is orthogonal to any polynomial of degree less than n.
b. Show that the polynomials satisfy a recurrence relation

$$
\phi_{n+1}(x)=\left(A_{n} x+B_{n}\right) \phi_{n}(x)-C_{n} \phi_{n-1}(x)
$$

where $A_{n}=\frac{k_{n+1}}{k_{n}}$. Express B_{n} and C_{n} in terms of A_{n}, A_{n-1}, and ϕ_{n}.
5. [10 pts] (Keener Problem 2.2.25.) A linear projection is a linear operator P mapping a Hilbert space H into itself with the property that $P^{2}=P$.
a. Let $\phi_{k}(x), k=0,1, \ldots, N$ be the piecewise linear finite element basis functions satisfying $\phi_{k}\left(\frac{j}{n}\right)=\delta_{j k}$. Show that

$$
P f=\sum_{j=0}^{N} f\left(\frac{j}{N}\right) \phi_{j}(x)
$$

is a projection on the space of continuous functions $C[0,1]$.
b. Define a projection on the space of continuously differentiable functions $C^{1}[0,1]$ using the cubic splines.

