M641 Fall 2012 Midterm Exam Solutions

1. [10 pts] Show that if a linear space \mathcal{S} has dimension n then:
a. Any collection of linearly independent elements of \mathcal{S} must contain n or fewer elements.
b. Any n linearly independent elements of \mathcal{S} forms a basis of \mathcal{S}.

Solution. For (a) suppose $\left\{u_{k}\right\}_{k=1}^{n}$ is a basis of \mathcal{S} and $\left\{v_{j}\right\}_{j=1}^{m}$ is a linearly independent collection of elements of \mathcal{S} with $m>n$. The calculation in Keener 1.1.1 says precisely that this is a contradition. I.e., we'll show that the set $\left\{v_{j}\right\}_{j=1}^{m}$ is linearly dependent, so that at least one element can be removed. This process of removal can continue until $n=m$.
We can expand each of the v_{j} in terms of the $\left\{u_{k}\right\}_{k=1}^{n}$

$$
v_{j}=\sum_{k=1}^{n} a_{k j} u_{k}
$$

Now we try to identify a set of constants $\left\{c_{j}\right\}_{j=1}^{m}$, not all 0 , so that

$$
\sum_{j=1}^{m} c_{j} v_{j}=0
$$

This would require

$$
\sum_{j=1}^{m} c_{j} \sum_{k=1}^{n} a_{k j} u_{k}=0 \Rightarrow \sum_{k=1}^{n}\left(\sum_{j=1}^{m} c_{j} a_{k j}\right) u_{k}=0
$$

If the $\left\{u_{k}\right\}_{k=1}^{n}$ are linearly independent, we must have

$$
\sum_{j=1}^{m} a_{k j} c_{j}=0
$$

for all $k \in\{1,2, \ldots, n\}$. This is equivalent to the matrix equation

$$
A \vec{c}=0,
$$

where $A \in \mathbb{R}^{n \times m}$. Since $m>n$ the null space of A must have dimension at least $m-n$, and so there must exist a non-trivial vector \vec{c}, so that $A \vec{c}=0$. But this means precisely that the set $\left\{v_{j}\right\}_{j=1}^{m}$ is not linearly independent.
For (b) suppose we have any n linearly independent elements in \mathcal{S}, say $\left\{w_{j}\right\}_{j=1}^{n}$, and suppose this set is not a basis for \mathcal{S}. Then there will be an element $s \in \mathcal{S}$ so that s is not a linear combination of the $\left\{w_{j}\right\}_{j=1}^{n}$. But this means we would have a set of $n+1$ linearly independent elements, which contradicts (a).
2 [10 pts]. Consider the symmetric 5×5 matrix

$$
A=\left(\begin{array}{ccccc}
10 & 1 & -1 & 0 & \frac{\sqrt{39}}{2} \\
1 & 0 & 1 & -1 & 1 \\
-1 & 1 & 1 & 0 & -1 \\
0 & -1 & 0 & -1 & 1 \\
\frac{\sqrt{39}}{2} & 1 & -1 & 1 & 5
\end{array}\right)
$$

Show that if λ_{1} denotes the largest eigenvalue of this matrix then $\lambda_{1} \geq 11.5$.
Solution. We know that

$$
\lambda_{1}=\max _{|\vec{x}|=1}\langle A \vec{x}, \vec{x}\rangle \geq \max _{\substack{\mid \vec{x}=1 \\ x_{2}=x_{3}=x_{4}=0}}\langle A \vec{x}, \vec{x}\rangle=\max _{\substack{|\vec{x}| \mid=1 \\ x_{2}=x_{3}=x_{4}=0}} \sum_{i, j \neq 2,3,4} A_{i j} x_{i} x_{j} .
$$

The right-hand side is precisely the largest eigenvalue of the submatrix

$$
A_{1}=\left(\begin{array}{cc}
10 & \frac{\sqrt{39}}{2} \\
\frac{\sqrt{39}}{2} & 5
\end{array}\right) .
$$

The eigenvalues of this matrix satisfy

$$
(10-\lambda)(5-\lambda)-\frac{39}{4}=0 \Rightarrow \lambda^{2}-15 \lambda+\frac{161}{4}=0 .
$$

We see that

$$
\lambda=\frac{15 \pm \sqrt{225-161}}{2}=\frac{15 \pm \sqrt{64}}{2}=\frac{15 \pm 8}{2}=11.5,3.5 .
$$

3 [10 pts]. Answer the following:
a. State the Fredholm Alternative, as discussed in class and in Keener.
b. Prove the following version of the Fredholm Alternative:

For any matrix $A \in \mathbb{C}^{n \times n}$ exactly one of the following holds:

- $A \vec{x}=\vec{b}$ has a unique solution for each $\vec{b} \in \mathbb{C}^{n}$
- $\mathcal{N}\left(A^{*}\right) \neq\{0\}$

Solution. For (a) the statement from class is as follows:
Suppose $A \in \mathbb{C}^{m \times n}$ and $\vec{b} \in \mathbb{C}^{m}$. The equation $A \vec{x}=\vec{b}$ has a solution if and only if $\vec{b} \in \mathcal{N}\left(A^{*}\right)^{\perp}$.
For (b), first suppose $A \vec{x}=\vec{b}$ has a solution for each $\vec{b} \in \mathbb{C}^{n}$. According to the Fredholm Alternative, each of these \vec{b} must be in $\mathcal{N}\left(A^{*}\right)^{\perp}$, so $\mathcal{N}\left(A^{*}\right)^{\perp}=\mathbb{C}^{n}$. Since $\mathbb{C}^{n}=\mathcal{N}\left(A^{*}\right) \oplus$ $\mathcal{N}\left(A^{*}\right)^{\perp}$, we conclude that $\mathcal{N}\left(A^{*}\right)=\{0\}$. On the other hand, suppose there exists $\vec{b} \in \mathbb{C}^{n}$ so that $A \vec{x}=\vec{b}$ does not have a unique solution. If no solution exists for $\vec{b} \in \mathbb{C}^{n}$ then by the Fredholm Alternative $\operatorname{dim} \mathcal{N}\left(A^{*}\right)^{\perp}<n$ and so $\mathcal{N}\left(A^{*}\right) \neq\{0\}$. On the other hand, if a solution exists but is not unique, then by letting \vec{x}_{1} and \vec{x}_{2} denote two solutions we see that $\mathcal{N}(A) \neq\{0\}$. By the Fredholm Alternative,

$$
\mathbb{C}^{n}=\mathcal{R}\left(A^{*}\right) \oplus \mathcal{N}(A),
$$

so $\operatorname{dim} \mathcal{R}\left(A^{*}\right)<n$. But by the rank-nullity theorem

$$
\operatorname{dim} \mathcal{R}\left(A^{*}\right)+\operatorname{dim} \mathcal{N}\left(A^{*}\right)=n,
$$

so $\mathcal{N}\left(A^{*}\right) \neq\{0\}$.

Alternatively, we can shorten this a little by using the Matrix Inversion Theorem. In particular, we start by asserting that $A \vec{x}=\vec{b}$ has a unique solution for each $\vec{b} \in \mathbb{C}^{n}$ if and only if $\mathcal{N}(A)=\{0\}$ (which ensures that A is invertible). Now for $\mathcal{N}(A) \neq\{0\}$ we simply use the latter part of the previous proof.
4. [10 pts] Answer the following:
a. State Hölder's inequality.
b. Prove the following theorem: Suppose $U \subset \mathbb{R}^{n}$ is open and $1<p, q<\infty$, with $\frac{1}{r}=$ $\frac{1}{p}+\frac{1}{q}<1$. Show that if $f \in L^{p}(U)$ and $g \in L^{q}(U)$ then

$$
\|f g\|_{L^{r}} \leq\|f\|_{L^{p}}\|g\|_{L^{q}}
$$

Solution. For (a): Suppose $1 \leq p, q \leq \infty$ and $\frac{1}{p}+\frac{1}{q}=1$. Then if $u \in L^{p}(U)$ and $v \in L^{q}(U)$ we have

$$
\|u v\|_{L^{1}} \leq\|u\|_{L^{p}}\|v\|_{L^{q}} .
$$

For (b),

$$
\|f g\|_{L^{r}}^{r}=\int_{U}|f|^{r}|g|^{r} d \vec{x}
$$

We use Hölder's inequality with $p_{1}=p / r$ and $p_{2}=q / r$. This immediately gives

$$
\int_{U}|f|^{r}|g|^{r} d \vec{x} \leq\left(\int_{U}|f|^{p} d \vec{x}\right)^{r / p}\left(\int_{U}|g|^{q} d \vec{x}\right)^{r / q} .
$$

Now taking an r root gives the claim.
5. [10 pts] Find the values $l \in \mathbb{R}$ for which

$$
f(x)=|\ln | x| |^{l}
$$

is weakly differentiable on $U=(-1,1)$.
Solution. First, we verify that $f \in L_{l o c}^{1}(U)$. Notice, in particular, that since we only require local integrability there will be no problem at the endstates ± 1. That is, it's sufficient to check when

$$
\int_{-1+\delta}^{1-\delta}|\ln | x| |^{l} d x
$$

is finite for any $\delta>0$. But this is clearly bounded since $\ln |x|$ blows up sub-algebraically as $x \rightarrow 0$. If you want to think about this in more detail, consider the integral

$$
\int_{0}^{1-\delta}(-\ln x)^{l} d x
$$

which is precisely half the integral under consideration. Set $u=-\ln x$ so that $d x=-e^{-u} d u$. Then

$$
\int_{0}^{1-\delta}(-\ln x)^{l} d x=\int_{-\ln (1-\delta)}^{\infty} u^{l} e^{-u} d u
$$

Here, the sub-algebraic nature of $\ln |x|$ becomes the (perhaps more familiar) sub-exponential behavior of u^{l}. Due to this exponential decay, this last integral is clearly finite.
Next, we need to identify $v \in L_{l o c}^{1}(U)$ so that

$$
\int_{-1}^{1} f(x) \phi^{\prime}(x) d x=-\int_{-1}^{1} v(x) \phi(x) d x
$$

for all $\phi \in C_{c}^{\infty}(-1,1)$. We compute

$$
\begin{aligned}
\int_{-1}^{1}|\ln | x| |^{l} \phi^{\prime}(x) d x & =\lim _{\epsilon \rightarrow 0} \int_{\epsilon<|x|<1}|\ln | x| |^{l} \phi^{\prime}(x) d x \\
& =\lim _{\epsilon \rightarrow 0}\left\{\left.|\ln | x| |^{l} \phi(x)\right|_{-1} ^{-\epsilon}+\left.|\ln | x| |^{l} \phi(x)\right|_{\epsilon} ^{1}-\int_{\epsilon<|x|<1} l|\ln | x| |^{l-2} \ln |x| \frac{x}{|x|^{2}} \phi(x) d x\right\} .
\end{aligned}
$$

For the boundary terms $\phi(-1)=\phi(1)=0$ by compact support, and

$$
\lim _{\epsilon \rightarrow 0}\left\{|\ln \epsilon|^{l}(\phi(-\epsilon)-\phi(\epsilon))\right\}=0
$$

by the continuous differentiability of ϕ. Our candidate for a weak derivative is

$$
v(x)=l|\ln | x| |^{l-2} \ln |x| \frac{x}{|x|^{2}}=-l(-\ln |x|)^{l-1} \frac{1}{x} .
$$

We need to check when this is in $L_{l o c}^{1}(-1,1)$, so consider

$$
\int_{-1+\delta}^{1-\delta} \frac{|\ln | x| |^{l-1}}{|x|} d x
$$

Here $\ln |x|<0$, so for example consider

$$
-\int_{0}^{1-\delta} \frac{(\ln x)^{l-1}}{x} d x
$$

We set $y=\ln x \Rightarrow d y=\frac{d x}{x}$ so that we have, for $l \neq 0$,

$$
-\int_{-\infty}^{\ln (1-\delta)} y^{l-1} d y=-\left.\frac{y^{l}}{l}\right|_{-\infty} ^{\ln (1-\delta)}
$$

and this is bounded for $l<0$. For $l=0$ we have simply $v \equiv 0$, so we conclude that the range of l is

$$
l \leq 0
$$

