
M641 Fall 2012 Midterm Exam Solutions

1. [10 pts] Show that if a linear space S has dimension n then:

a. Any collection of linearly independent elements of S must contain n or fewer elements.

b. Any n linearly independent elements of S forms a basis of S.
Solution. For (a) suppose {uk}nk=1 is a basis of S and {vj}mj=1 is a linearly independent
collection of elements of S with m > n. The calculation in Keener 1.1.1 says precisely that
this is a contradition. I.e., we’ll show that the set {vj}mj=1 is linearly dependent, so that at
least one element can be removed. This process of removal can continue until n = m.

We can expand each of the vj in terms of the {uk}nk=1

vj =

n
∑

k=1

akjuk.

Now we try to identify a set of constants {cj}mj=1, not all 0, so that

m
∑

j=1

cjvj = 0.

This would require

m
∑

j=1

cj

n
∑

k=1

akjuk = 0 ⇒
n
∑

k=1

(

m
∑

j=1

cjakj

)

uk = 0.

If the {uk}nk=1 are linearly independent, we must have

m
∑

j=1

akjcj = 0

for all k ∈ {1, 2, . . . , n}. This is equivalent to the matrix equation

A~c = 0,

where A ∈ Rn×m. Since m > n the null space of A must have dimension at least m− n, and
so there must exist a non-trivial vector ~c, so that A~c = 0. But this means precisely that the
set {vj}mj=1 is not linearly independent.

For (b) suppose we have any n linearly independent elements in S, say {wj}nj=1, and suppose
this set is not a basis for S. Then there will be an element s ∈ S so that s is not a linear
combination of the {wj}nj=1. But this means we would have a set of n+1 linearly independent
elements, which contradicts (a).

2 [10 pts]. Consider the symmetric 5× 5 matrix

A =













10 1 −1 0
√
39
2

1 0 1 −1 1
−1 1 1 0 −1
0 −1 0 −1 1√
39
2

1 −1 1 5













.
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Show that if λ1 denotes the largest eigenvalue of this matrix then λ1 ≥ 11.5.

Solution. We know that

λ1 = max
|~x|=1

〈A~x, ~x〉 ≥ max
|~x|=1

x2=x3=x4=0

〈A~x, ~x〉 = max
|~x|=1

x2=x3=x4=0

∑

i,j 6=2,3,4

Aijxixj .

The right-hand side is precisely the largest eigenvalue of the submatrix

A1 =

(

10
√
39
2√

39
2

5

)

.

The eigenvalues of this matrix satisfy

(10− λ)(5− λ)− 39

4
= 0 ⇒ λ2 − 15λ+

161

4
= 0.

We see that

λ =
15±

√
225− 161

2
=

15±
√
64

2
=

15± 8

2
= 11.5, 3.5.

3 [10 pts]. Answer the following:

a. State the Fredholm Alternative, as discussed in class and in Keener.

b. Prove the following version of the Fredholm Alternative:

For any matrix A ∈ Cn×n exactly one of the following holds:

• A~x = ~b has a unique solution for each ~b ∈ C
n

• N (A∗) 6= {0}

Solution. For (a) the statement from class is as follows:

Suppose A ∈ C
m×n and ~b ∈ C

m. The equation A~x = ~b has a solution if and only if
~b ∈ N (A∗)⊥.

For (b), first suppose A~x = ~b has a solution for each ~b ∈ Cn. According to the Fredholm

Alternative, each of these ~b must be in N (A∗)⊥, so N (A∗)⊥ = Cn. Since Cn = N (A∗) ⊕
N (A∗)⊥, we conclude that N (A∗) = {0}. On the other hand, suppose there exists ~b ∈ Cn

so that A~x = ~b does not have a unique solution. If no solution exists for ~b ∈ Cn then by
the Fredholm Alternative dim N (A∗)⊥ < n and so N (A∗) 6= {0}. On the other hand, if a
solution exists but is not unique, then by letting ~x1 and ~x2 denote two solutions we see that
N (A) 6= {0}. By the Fredholm Alternative,

C
n = R(A∗)⊕N (A),

so dim R(A∗) < n. But by the rank-nullity theorem

dimR(A∗) + dimN (A∗) = n,

so N (A∗) 6= {0}.
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Alternatively, we can shorten this a little by using the Matrix Inversion Theorem. In par-
ticular, we start by asserting that A~x = ~b has a unique solution for each ~b ∈ Cn if and only
if N (A) = {0} (which ensures that A is invertible). Now for N (A) 6= {0} we simply use the
latter part of the previous proof.

4. [10 pts] Answer the following:

a. State Hölder’s inequality.

b. Prove the following theorem: Suppose U ⊂ R
n is open and 1 < p, q < ∞, with 1

r
=

1
p
+ 1

q
< 1. Show that if f ∈ Lp(U) and g ∈ Lq(U) then

‖fg‖Lr ≤ ‖f‖Lp‖g‖Lq .

Solution. For (a): Suppose 1 ≤ p, q ≤ ∞ and 1
p
+ 1

q
= 1. Then if u ∈ Lp(U) and v ∈ Lq(U)

we have
‖uv‖L1 ≤ ‖u‖Lp‖v‖Lq .

For (b),

‖fg‖rLr =

ˆ

U

|f |r|g|rd~x.

We use Hölder’s inequality with p1 = p/r and p2 = q/r. This immediately gives

ˆ

U

|f |r|g|rd~x ≤
(

ˆ

U

|f |pd~x
)r/p(

ˆ

U

|g|qd~x
)r/q

.

Now taking an r root gives the claim.

5. [10 pts] Find the values l ∈ R for which

f(x) =
∣

∣

∣
ln |x|

∣

∣

∣

l

is weakly differentiable on U = (−1, 1).

Solution. First, we verify that f ∈ L1
loc(U). Notice, in particular, that since we only require

local integrability there will be no problem at the endstates ±1. That is, it’s sufficient to
check when

ˆ 1−δ

−1+δ

∣

∣

∣
ln |x|

∣

∣

∣

l

dx

is finite for any δ > 0. But this is clearly bounded since ln |x| blows up sub-algebraically as
x → 0. If you want to think about this in more detail, consider the integral

ˆ 1−δ

0

(− lnx)ldx,

which is precisely half the integral under consideration. Set u = − ln x so that dx = −e−udu.
Then

ˆ 1−δ

0

(− ln x)ldx =

ˆ ∞

− ln(1−δ)

ule−udu.
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Here, the sub-algebraic nature of ln |x| becomes the (perhaps more familiar) sub-exponential
behavior of ul. Due to this exponential decay, this last integral is clearly finite.

Next, we need to identify v ∈ L1
loc(U) so that

ˆ 1

−1

f(x)φ′(x)dx = −
ˆ 1

−1

v(x)φ(x)dx

for all φ ∈ C∞
c (−1, 1). We compute

ˆ 1

−1

| ln |x||lφ′(x)dx = lim
ǫ→0

ˆ

ǫ<|x|<1

| ln |x||lφ′(x)dx

= lim
ǫ→0

{

| ln |x||lφ(x)
∣

∣

∣

−ǫ

−1
+ | ln |x||lφ(x)

∣

∣

∣

1

ǫ
−
ˆ

ǫ<|x|<1

l| ln |x||l−2 ln |x| x

|x|2φ(x)dx
}

.

For the boundary terms φ(−1) = φ(1) = 0 by compact support, and

lim
ǫ→0

{

| ln ǫ|l(φ(−ǫ)− φ(ǫ))
}

= 0

by the continuous differentiability of φ. Our candidate for a weak derivative is

v(x) = l| ln |x||l−2 ln |x| x

|x|2 = −l(− ln |x|)l−1 1

x
.

We need to check when this is in L1
loc(−1, 1), so consider

ˆ 1−δ

−1+δ

| ln |x||l−1

|x| dx.

Here ln |x| < 0, so for example consider

−
ˆ 1−δ

0

(ln x)l−1

x
dx.

We set y = ln x ⇒ dy = dx
x

so that we have, for l 6= 0,

−
ˆ ln(1−δ)

−∞
yl−1dy = −yl

l

∣

∣

∣

ln(1−δ)

−∞
,

and this is bounded for l < 0. For l = 0 we have simply v ≡ 0, so we conclude that the
range of l is

l ≤ 0.
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