M642 Assignment 10, due Friday April 26

Note. Since class won't meet Friday April 19, this will be a double assignment due in two weeks.

1. [10 pts] (Keener Problem 6.4.3.) Evaluate

$$
I_{k}=\int_{0}^{\infty} \frac{d x}{1+x^{k}}, \quad k=1,2, \ldots
$$

2. [10 pts] Use contour integration to evaluate the integral

$$
I=\int_{0}^{1} \frac{1}{\sqrt{x(1-x)}} d x .
$$

Note. I proceeded by considering

$$
\int_{\partial B(0, R)} f(z) d z,
$$

where

$$
f(z):=\frac{1}{z \sqrt{1-\frac{1}{z}}}
$$

3. [10 pts] Characterize the streamlines associated with each of the following flows, and compute the associated velocity vector \vec{u}. In each case, A denotes a non-zero real constant. a.

$$
f(z)=i A \ln (z-i)
$$

b.

$$
f(z)=\frac{i A}{z}
$$

4. [10 pts] Answer the following:
a. Suppose the streamlines associated with a certain flow correspond with hyperbolas in the complex plane described by

$$
x^{2}-y^{2}=c^{2}
$$

where $z=x+i y$. Construct a function $f(z)=\phi+i \psi$ (up to an additive constant) corresponding with this flow.
b. Suppose the streamlines associated with a certain flow correspond with

$$
y-2 x y=c
$$

where $z=x+i y$. Construct a function $f(z)=\phi+i \psi$ (up to an additive constant) corresponding with this flow.
5. [10 pts] On p. 231 Keener writes

$$
x=\frac{1}{2}(z+\bar{z}), \quad y=\frac{1}{2 i}(z-\bar{z})
$$

and also

$$
\frac{d f}{d z}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial z}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial z}=\frac{1}{2}\left(f_{x}-i f_{y}\right) .
$$

The notation $\frac{d f}{d z}$ is possibly misleading, since it clearly isn't $f^{\prime}(z)$ (see, e.g., Part (a)). More commonly, Keener's $\frac{d f}{d z}$ is denoted f_{z} or ∂f.
a. Find a function f for which $\frac{d f}{d z}$ exists and $f^{\prime}(z)$ does not.
b. To see the relationship between $\frac{d f}{d z}$ and $f^{\prime}(z)$ compute $\frac{d f}{d \bar{z}}$ (more commonly $f_{\bar{z}}$ or $\bar{\partial} f$), and find conditions on $\frac{d f}{d \bar{z}}$ under which f is analytic.
c. What is the relationship between $\frac{d f}{d z}$ and $f^{\prime}(z)$ if f is analytic?
6. (Keener Problem 6.3.6.) Solve the following:
a. Describe the flow associated with the function $f(z)=A z^{2}$. (Make a contour plot of $\psi(x, y)$.)
b. Modify this flow so that it flows around a circle of radius 1 centered at $z=i$. What is the lift on this circle?
c. Add rotation to this flow by adding the term $i \gamma \ln (z-i)$. What is the lift on the circle in this flow?
7. [10 pts] If we model an airfoil by a line described by

$$
z=r e^{-i \alpha} ; \quad r \in[-a, a],
$$

for some angle of attack $\alpha \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, the flow can be described by

$$
f(z)=U e^{i \alpha}\left\{z \cos \alpha-i \sqrt{z^{2}-a^{2} e^{-2 i \alpha}} \sin \alpha\right\}-i \frac{\gamma}{2 \pi} \ln \left\{\frac{e^{i \alpha}}{a}\left(z+\sqrt{z^{2}-a^{2} e^{-2 i \alpha}}\right)\right\},
$$

where U is the far field horizontal velocity. (See Keener p. 242, though Keener drops off an unnecessary constant.) Verify the lift Keener computes for this case (his F_{y} on the bottom of p. 242), and compute the drag F_{x}.
Note. It's Keener's notation to describe this function as f, but note that this is the mathematical object he has more generally called w (see p. 232).
8. [10 pts] (Keener Problem 7.1.2.) Classify the spectrum of the following operators acting on the space of complex vectors $x=\left(x_{1}, x_{2}, \cdots, x_{n}, \cdots\right),\|x\|^{2}=\sum_{i=1}^{\infty}\left|x_{i}\right|^{2}<\infty$.
a.

$$
L_{1} x=\left(0, x_{1}, x_{2}, \cdots\right)
$$

b.

$$
L_{2} x=\left(x_{2}, x_{3}, \cdots\right)
$$

c.

$$
L_{3} x=\left(x_{1}, \frac{x_{2}}{2}, \frac{x_{3}}{3}, \cdots\right)
$$

9. [10 pts] Show that the circulation on $\partial B(0, a)$ associated with the flow with complex velocity potential

$$
w(z)=V\left(z+\frac{a^{2}}{z}\right)
$$

is 0 .
10. [10 pts] In this problem we'll verify that the map

$$
\zeta(z)=\frac{e^{i \alpha}}{a}\left\{z+\left(z^{2}-a^{2} e^{-2 i \alpha}\right)^{1 / 2}\right\}
$$

maps the line in \mathbb{C} from $a e^{-i \alpha}$ to $a e^{i(\pi-\alpha)}$ onto $\partial B(0, a)$.
a. Check that the map $w=f_{1}(z)=e^{i \alpha} z$ maps this line onto the interval on the real axis $[-a, a]$.
b. Check that the Joukowski transformation

$$
w=\frac{a}{2}\left(\zeta+\frac{1}{\zeta}\right)
$$

maps $\partial B(0,1)$ onto $[-a, a]$ exactly twice.
c. Show that the inverse of the Joukowski transformation can be expressed as

$$
\zeta=f_{2}(w)=\frac{w}{a}+\frac{1}{a} \sqrt{w^{2}-a^{2}}=\frac{w}{a}+\frac{1}{a} \sqrt{w-a} \sqrt{w+a} .
$$

d. Show that if we take $[-a, a]$ to be the branch associated with the map described in Part (c) then ζ traces out the upper semicircle of $\partial B(0,1)$ as w goes from a to $-a$ when $\operatorname{Im} w$ has gone to 0 from above the real axis, and traces out the lower semicircle of $\partial B(0,1)$ as w goes from $-a$ to a when $\operatorname{Im} w$ has gone to 0 from below the real axis.
e. Combine maps f_{1} and f_{2} to conclude the main claim of this problem.

