M642 Assignment 3, due Friday Feb. 8

1. (Keener Problem 4.2.1.) Construct a Green's function for

$$
u^{\prime \prime}=f(x) ; \quad u(0)=u^{\prime}(1)=0
$$

and express the solution in terms of this Green's function.
Note. Cf. Problem 3.4.2d.
2. (Keener Problem 4.2.3.) Construct a Green's function for

$$
u^{\prime \prime}+\alpha^{2} u=f(x) ; \quad u(0)=u(1), u^{\prime}(0)=u^{\prime}(1)
$$

and express the solution in terms of this Green's function. For what values of α does the Green's function fail to exist?
3. (Keener Problem 4.2.6.) Construct the Green's function for

$$
\begin{aligned}
u^{\prime \prime}+\frac{3}{2 x} u^{\prime}-\frac{3}{2} \frac{1}{x^{2}} u & =f(x) \\
u(0) & =0 \\
u^{\prime}(1) & =0 .
\end{aligned}
$$

Express the solution in terms of the Green's function.
4. (Keener Problem 4.2.8.) The operator $L u=u^{\prime \prime}+4 u$ with boundary conditions $u^{\prime}(0)=u^{\prime}(\pi), u(0)=u(\pi)$ has no Green's function. Why?
5. (Keener Problem 4.2.9.) Convert the differential equation

$$
u^{\prime \prime}+\lambda u=f(x), \quad u(0)=\alpha, u(1)=\beta
$$

to a Fredholm integral equation of the form

$$
u(x)=\lambda \int k(x, \xi) u(\xi) d \xi+g(x)
$$

