M642 Assignment 4, due Friday Feb. 15

1. [10 pts] Set $L u=u^{\prime \prime \prime}$ and find the Green's function for the ODE

$$
\begin{aligned}
L u & =f \quad \text { on }(0,1) \\
u(0) & =0 \\
u(1) & =0 \\
u^{\prime}(0) & =0 .
\end{aligned}
$$

2. [10 pts] Set $L u=u^{\prime \prime \prime \prime}+\lambda u$, with $\lambda>0$, and find the Green's function for the ODE

$$
\begin{aligned}
L u & =f \quad \text { on }(-\infty,+\infty) \\
\lim _{x \rightarrow \pm \infty} u(x) & =0 \\
\lim _{x \rightarrow \pm \infty} u^{\prime}(x) & =0 .
\end{aligned}
$$

Note 1. Recall that for $\lambda>0$ the equation $r^{4}+\lambda=0$ has four roots

$$
\begin{aligned}
& \mu_{1}=\left(\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}\right) \sqrt[4]{\lambda} \\
& \mu_{2}=\left(\frac{\sqrt{2}}{2}-i \frac{\sqrt{2}}{2}\right) \sqrt[4]{\lambda} \\
& \mu_{3}=\left(-\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}\right) \sqrt[4]{\lambda} \\
& \mu_{4}=\left(-\frac{\sqrt{2}}{2}-i \frac{\sqrt{2}}{2}\right) \sqrt[4]{\lambda},
\end{aligned}
$$

where $\sqrt[4]{\lambda}$ is the unique positive value so that $(\sqrt[4]{\lambda})^{4}=\lambda$.
Note 2. For problems like this, I use Cramer's rule for the matrix algebra.
3. [10 pts] Set $L u=u^{\prime \prime}+k u, k \neq 0$, and construct a Green's function for the initial value problem

$$
\begin{aligned}
L u & =f \quad \text { on }(0, \infty) \\
u(0) & =0 \\
u^{\prime}(0) & =0 .
\end{aligned}
$$

4. [10 pts] Answer the following:
a. Suppose ϕ_{1} and ϕ_{2} both satisfy

$$
L \phi_{i}=0
$$

for

$$
L u=a_{2}(x) u^{\prime \prime}+a_{1}(x) u^{\prime}+a_{0}(x) u
$$

and show that the Wronskian

$$
W(x)=\phi_{1} \phi_{2}^{\prime}-\phi_{1}^{\prime} \phi_{2}
$$

satisfies

$$
a_{2} W^{\prime}+a_{1} W=0
$$

b. Verify Keener's expression from p. 155

$$
u(x)=\int_{a}^{b} g(x, y) f(y) d y+\frac{B_{2} u(b) u_{1}(x)}{B_{2} u_{1}(b)}+\frac{B_{1} u(a) u_{2}(x)}{B_{1} u_{2}(a)},
$$

keeping in mind that Keener uses u_{i} where we've been using ϕ_{i} in class, that the boundary operators are separated:

$$
\begin{aligned}
& B_{1} u=\alpha_{1} u(a)+\beta_{1} u^{\prime}(a) \\
& B_{2} u=\alpha_{2} u(b)+\beta_{2} u^{\prime}(b),
\end{aligned}
$$

and that by construction

$$
\begin{aligned}
B_{1} \phi_{1}(a) & =0 \\
B_{2} \phi_{2}(b) & =0 .
\end{aligned}
$$

5. [10 pts] (Keener Problem 4.2.15.) Suppose $A(t)$ is an $n \times n$ matrix, and suppose the matrix $X(t)$ consists of columns all of which satisfy the vector differential equation $\frac{d \vec{x}}{d t}=A(t) \vec{x}$ for $t \in\left[t_{1}, t_{2}\right]$, and $X(t)$ is invertible (the columns are linearly independent). Show that the boundary value problem

$$
\begin{aligned}
\frac{d \vec{x}}{d t} & =A(t) \vec{x}+\vec{f}(t) \\
L \vec{x}\left(t_{1}\right)+R \vec{x}\left(t_{2}\right) & =\vec{\alpha}
\end{aligned}
$$

where $\vec{f}(t), \vec{\alpha}$ are vectors and L, R are $n \times n$ matrices, has a unique solution if and only if

$$
M:=L X\left(t_{1}\right)+R X\left(t_{2}\right)
$$

is a nonsingular matrix, and that, if this is the case, the solution can be written as

$$
\vec{x}(t)=X(t) M^{-1} \vec{\alpha}+\int_{t_{1}}^{t_{2}} G(t, s) \vec{f}(s) d s
$$

where

$$
G(t, s)= \begin{cases}X(t) M^{-1} L X\left(t_{1}\right) X^{-1}(s) & s<t \\ -X(t) M^{-1} R X\left(t_{2}\right) X^{-1}(s) & s>t\end{cases}
$$

(The matrix G is the Green's function for this problem.)

