M642 Assignment 5, due Friday Feb. 22

1. [10 pts] Solve the following:
a. (Keener Problem 4.3.1.) Find the adjoint operator L^{*} and its domain for the operator

$$
L u=u^{\prime \prime}+a(x) u^{\prime}+b(x) u ; \quad u(0)=u^{\prime}(1), u(1)=u^{\prime}(0) .
$$

Assume $a(x)$ is continuously differentiable and $b(x)$ is continuous on the interval $[0,1]$.
b. (Keener Problem 4.3.3.) Find the adjoint operator L^{*} and its domain for

$$
\begin{aligned}
L u & =u^{\prime \prime}+4 u^{\prime}-3 u \\
u^{\prime}(0)+4 u(0) & =0 \\
u^{\prime}(1)+4 u(1) & =0 .
\end{aligned}
$$

2. [10 pts] Find the adjoint operator for

$$
\begin{aligned}
L u & =\left(u^{\prime \prime}-V(x) u\right)^{\prime \prime}=f(x) \\
u^{\prime}(0) & =u^{\prime}(1)=0 \\
u^{\prime \prime \prime}(0) & =u^{\prime \prime \prime}(1)=0 .
\end{aligned}
$$

Is this operator self-adjoint?
3. [10 pts] Consider the eigenvalue problem

$$
\begin{aligned}
L u & =\left(u^{\prime \prime}-V(x) u\right)^{\prime \prime}=\lambda u \\
u^{\prime}(0) & =u^{\prime}(1)=0 \\
u^{\prime \prime \prime}(0) & =u^{\prime \prime \prime}(1)=0,
\end{aligned}
$$

for which we assume $V^{\prime}(0)=V^{\prime}(1)=0$.
a. Set $v(x)=\int_{0}^{x} u(y) d y$ and write down the eigenvalue problem (including boundary conditions) for v, assuming $\lambda \neq 0$. (Keep in mind that your boundary conditions should not involve derivatives as high as the order of your equation.)
b. Let \mathcal{L} denote your operator on v (again, including boundary conditions) and compute \mathcal{L}^{*}. Is \mathcal{L} self-adjoint?
4. [10 pts] (Keener Problem 4.3.9.) Find solvability conditions for the equation

$$
u^{\prime \prime}+u=f(x) ; \quad u(0)-u(2 \pi)=\alpha, u^{\prime}(0)-u^{\prime}(2 \pi)=-\beta .
$$

5. [10 pts] (Keener Problem 4.3.12.) Find solvability conditions for the equation

$$
\left(x u^{\prime}\right)^{\prime}=f(x) ; \quad u^{\prime}(1)=\alpha,\left.x u^{\prime}(x)\right|_{x=0}=\beta .
$$

Note. Although this problem does not satisfy all of our assumptions for the Fredholm Alternative, you can apply it in this case.

