M647 Assignment 7, due Friday March 22

1. [10 pts] Let $\alpha>1$ and consider the equation

$$
\begin{aligned}
-u^{\prime \prime} & =f \\
u(0) & =0 \\
\alpha u(1)+u^{\prime}(1) & =0 .
\end{aligned}
$$

a. Show that with these boundary conditions $L u=-u^{\prime \prime}$ is positive definite.
b. Use the method of eigenfunction expansion to solve this equation. You need not identify your eigenvalues algebraically, but indicate them graphically. Also, determine their approximate values as k gets large. (Expressing them as $\left\{\lambda_{k}\right\}_{k=1}^{\infty}$, ordered so that $\lambda_{1}<\lambda_{2}<\ldots$).
2. [10 pts] (Keener Problem 4.5.1.) Use the method of eigenfunction expansion to solve the equation

$$
\begin{aligned}
u^{\prime \prime} & =f(x) \\
u^{\prime}(0) & =\alpha \\
u^{\prime}(1) & =\beta .
\end{aligned}
$$

Note. Omit the part that Keener assigns as a numerical calculation.
3. [10 pts] (Keener Problem 4.5.2.) Use the method of eigenfunction expansion to solve

$$
\begin{aligned}
u^{\prime \prime}+u & =f(x) \\
u(0) & =u(2 \pi) \\
u^{\prime}(0) & =u^{\prime}(2 \pi) .
\end{aligned}
$$

Note. Clearly, you should expand a bit on Keener's hint.
4. [10 pts] Solve the quadratic equation

$$
z^{2}-3 z+3+i=0
$$

expressing your solutions in the form $a+i b$.
5. [10 pts] Compute the following values:
a. $\sqrt{4}$ with branch $[0,2 \pi)$.
b. $\sqrt{4}$ with branch $(0,2 \pi]$.
c. $\ln (-i)$ with branch $[0,2 \pi)$.
d. $\ln (1+i)$ with branch $[0,2 \pi)$.
e. i^{i} with branch $[-\pi, \pi)$.
f. $(-i)^{1+i}$ with branch $[-\pi, \pi)$.

