M642 Assignment 8, due Friday April 5

Note. This is a double assignment, since there is no class Friday March 29.

1. $[10 \mathrm{pts}]$ (Keener Problem 6.1.1.) Solve the following.
a. The function $f(z)=\sqrt{z(z-1)(z-4)}$ is defined to have branch cuts given by $z=\rho e^{-i \pi / 2}$, $z=1+\rho e^{i \pi / 2}$, and $z=4+\rho e^{-i \pi / 2}, 0 \leq \rho<\infty$, and with $f(2)=-2 i$. Evaluate $f(-3)$, $f(1 / 2)$, and $f(5)$.
b. Determine the branch cut structure of

$$
f(z)=\ln \left(5+\sqrt{\frac{z+1}{z-1}}\right) .
$$

Make a plot in the f complex plane of the different branches of this function.
2. [10 pts] Consider the function

$$
f(z)= \begin{cases}\frac{z^{5}}{|z|^{4}} & z \neq 0 \\ 0 & z=0 .\end{cases}
$$

Show that the Cauchy-Riemann equations hold at $z=0$, but that f is not differentiable at $z=0$.
3. [10 pts] (Keener Problem 6.1.3.) Find all values of z for which
(a) $\sin z=2$
(b) $\sin z=i$
(c) $\tan ^{2} z=-1$
4. [10 pts] Let $r>0$ and let $\gamma(t)=r e^{i t}$ for $t \in\left[0, \frac{\pi}{4}\right]$. Show that

$$
\left|\int_{\gamma} e^{i z^{2}} d z\right| \leq \frac{\pi\left(1-e^{-r^{2}}\right)}{4 r}
$$

Note. Although we may not have time to prove it in class, this problem assumes students are familiar with the inequality

$$
\left|\int_{\mathcal{C}} f(z) d z\right| \leq \int_{\mathcal{C}}|f(z)||d z| .
$$

5. [10 pts] In M641 we reviewed the integral formula

$$
\int_{U} u_{x_{i}} d \vec{x}=\int_{\partial U} u \nu^{i} d S
$$

where $U \subset \mathbb{R}^{n}(n=1,2, \ldots)$ is an open set with C^{1} boundary (piecewise C^{1} is okay for $n=2$) and ν^{i} denotes the $i^{\text {th }}$ component of the outward unit normal vector. Use this to prove Green's Theorem

$$
\int_{\mathcal{C}} P d x+Q d y=\int_{D} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} d x d y
$$

under the assumptions stated in class.
6. [10 pts] (Keener Problem 6.2.1.) The function $f(z)$ is analytic in the entire z plane including $z=\infty$ except at $z=i / 2$, where it has a simple pole, and at $z=2$ where it has a pole of order 2. It is known that

$$
\begin{aligned}
\int_{|z|=1} f(z) d z & =2 \pi i \\
\int_{|z|=3} f(z) d z & =0 \\
\int_{|z|=3} f(z)(z-2) d z & =0 .
\end{aligned}
$$

Find $f(z)$ (unique up to an arbitrary additive constant).
7. [10 pts] Suppose $f(z)=u+i v$ is analytic in an open set U.
a. Show that if $f^{\prime}(z)=0$ for all $z \in U$ then f is constant in U.
b. Show that if one of the functions u, v, or $|f|$ is constant in U then f is constant in U.
8. [10 pts] Evaluate each of the following integrals.
a. (Keener Problem 6.2.6.)

$$
\int_{|z|=1 / 2} \frac{z+1}{z^{2}+z+1} d z
$$

b. (Keener Problem 6.2.7.)

$$
\int_{|z|=1 / 2} e^{z^{2} \ln (1+z)} d z
$$

c. (Keener Problem 6.2.8.)

$$
\int_{|z|=1 / 2} \arcsin z d z
$$

d. (Keener Problem 6.2.9.)

$$
\int_{|z|=1} \frac{\sin z}{2 z+i} d z
$$

e. (Keener Problem 6.2.10.)

$$
\int_{|z|=1} \frac{\ln (z+2)}{z+2} d z
$$

f. (Keener Problem 6.2.11.)

$$
\int_{|z|=1} \cot z d z
$$

9. [10 pts] (Keener Problem 6.2.12.) Show that, if $f(z)$ is analytic and nonzero on the interior of some region, then $|f(z)|$ cannot attain a (strict) local minimum on the interior of the domain.
10. [10 pts] In this problem we'll define the concept of a winding number and determine one of its properties.

Definition. Suppose $\gamma:[a, b] \rightarrow \mathbb{C}$ is a closed, piecewise smooth path and that z is any point not on γ. The winding number $n(\gamma, z)$ of γ about z (also called the index of γ with respect to z) is defined as

$$
n(\gamma, z):=\frac{1}{2 \pi i} \int_{\gamma} \frac{d \zeta}{\zeta-z}
$$

Show that $n(\gamma, z)$ is always integer-valued.
Note. Although we won't prove it, the following characterization can be made precise: $n(\gamma, z)$ counts the number of times γ winds around z. If γ is such that the bounded region surrounded by γ is kept to the left, then $n(\gamma, z)$ is positive.

