M642 Spring 2013 Assignment 9, due Friday April 12

1. $[10 \mathrm{pts}]$ (Keener Problem 6.2.15.) Prove the Fundamential Theorem of Algebra: An $\mathrm{n}^{\text {th }}$ order polynomial $P_{n}(z)$ has n roots (counting multiplicity) in the complex plane. Hint: If $P_{n}(z)$ has no roots then $1 / P_{n}(z)$ is bounded. Apply Liouville's Theorem.
Note. Notice that Keener's hint requires justification. Also, this ignores one aspect of the theorem: uniqueness. I.e., up to a rearrangement of the terms $P_{n}(z)$ can be uniquely factored into the form

$$
P_{n}(z)=a\left(z-r_{1}\right)\left(z-r_{2}\right) \ldots\left(z-r_{n}\right) .
$$

This is a matter of bookkeeping, and you don't need to prove it.
2. [10 pts] Let

$$
f(z)=\frac{1}{(z-1)(z+2)}
$$

and verify Keener's expansions from p. 226:
a.

$$
f(z)=\frac{1}{3} \sum_{n=0}^{\infty}\left(-1+\left(-\frac{1}{2}\right)^{n+1}\right) z^{n}, \quad|z|<1
$$

b.

$$
f(z)=\frac{1}{3} \sum_{n=-\infty}^{-1} z^{n}-\frac{1}{6} \sum_{n=0}^{\infty}\left(-\frac{z}{2}\right)^{n}, \quad 1<|z|<2
$$

c.

$$
f(z)=\frac{1}{6} \sum_{n=1}^{\infty}\left(\frac{1}{2^{n-1}}+(-1)^{n}\right)\left(\frac{2}{z}\right)^{n}, \quad|z|>2 .
$$

3. [10 pts] In this problem we'll work with the concept of residues.

Definition. First, recall that if $f(z)$ has an isolated singularity at $z=z_{0}$ and is analytic on the punctured disk $0<\left|z-z_{0}\right|<r$ then f will have a Laurent expansion

$$
f(z)=\sum_{n=-\infty}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

where

$$
a_{n}=\frac{1}{2 \pi i} \int_{\mathcal{C}} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{n}} d \zeta
$$

and \mathcal{C} is a simple closed positively oriented Jordon contour in \mathbb{C}. For any such function f, the residue of f at z_{0}, often denoted $\operatorname{Res}\left(z_{0}, f\right)$, is the coefficient a_{-1}; i.e.,

$$
\operatorname{Res}\left(z_{0}, f\right)=a_{-1}=\frac{1}{2 \pi i} \int_{\mathcal{C}} f(\zeta) d \zeta .
$$

Show that if f is analytic on $B^{*}\left(z_{0}, r\right)$, and has a pole of order m at z_{0}, then

$$
\operatorname{Res}\left(z_{0}, f\right)=\frac{1}{(m-1)!} \lim _{z \rightarrow z_{0}} \frac{d^{m-1}}{d z^{m-1}}\left\{\left(z-z_{0}\right)^{m} f(z)\right\} .
$$

Note. Since f is not defined at z_{0} it's traditional to write this as a limit, but in fact $g(z)=\left(z-z_{0}\right)^{m} f(z)$ can be regarded as an analytic function on $B\left(z_{0}, r\right)$. I.e., the singularity at z_{0} is removable.
4. [10 pts] Residue Theorem. Suppose that a function f is analytic except for isolated singularities in an open set $U \subset \mathbb{C}$, that E is the set of singular points of f in U, and that γ is a simple closed positively oriented Jordon contour in $U \backslash E$ with the property that the entire interior D of the Jordon contour is contained in U. Then

$$
\int_{\gamma} f(z) d z=2 \pi i \sum_{k=1}^{p} \operatorname{Res}\left(z_{k}, f\right)
$$

where $\left\{z_{k}\right\}_{k=1}^{p}$ are the elements of E that belong to D.
Note. The proof is immediate, by deforming the contour γ into a collection of contours, each encircling precisely one pole. You don't need to write this out.
a. Evaluate the integral

$$
\int_{|z|=1} z e^{3 / z} d z
$$

b. Evaluate the integral

$$
\int_{|z|=1}\left(z^{2}+2 z\right) \csc ^{2} z d z
$$

c. Evaluate the integral

$$
\int_{|z|=5} \frac{\cos z}{z^{2}(z-\pi)^{3}} d z
$$

5. [10 pts] Answer the following.

5a. (Keener Problem 6.4.1.) Evaluate the integral

$$
\int_{-\infty}^{+\infty} \frac{d x}{a x^{2}+b x+c}
$$

for $b^{2}-4 a c<0$.
Note. Keener's solution is not complete. Be sure to clarify it.
5b. (Keener Problem 6.4.2.) Evaluate

$$
I=\int_{0}^{\infty} \frac{x \sin x}{a^{2}+x^{2}} d x
$$

